Nuprl Lemma : rem_mag_bound

[a:ℤ]. ∀[n:ℤ-o].  |a rem n| < |n|


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o less_than: a < b uall: [x:A]. B[x] remainder: rem m int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B nat: or: P ∨ Q decidable: Dec(P) ge: i ≥  and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) guard: {T} false: False not: ¬A nequal: a ≠ b ∈  implies:  Q prop: uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] int_nzero: -o nat_plus: + true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rem_bounds_absval nat_plus_inc_int_nzero nat_plus_wf nat_wf decidable__le int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties nequal_wf less_than_wf subtype_rel_sets absval_wf rem_sym_1 iff_weakening_equal squash_wf true_wf minus_minus_cancel absval_sym int_formula_prop_not_lemma intformnot_wf int_nzero_properties member-less_than int_nzero_wf rem_sym_2 int_formula_prop_le_lemma int_term_value_minus_lemma intformle_wf itermMinus_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule setElimination rename Error :universeIsType,  intEquality unionElimination natural_numberEquality lambdaFormation independent_functionElimination baseClosed computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation applyLambdaEquality setEquality independent_isectElimination lambdaEquality because_Cache isectElimination minusEquality imageElimination equalitySymmetry imageMemberEquality equalityTransitivity productElimination remainderEquality universeEquality isect_memberFormation dependent_set_memberEquality closedConclusion baseApply

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    |a  rem  n|  <  |n|



Date html generated: 2019_06_20-PM-01_14_13
Last ObjectModification: 2018_10_03-PM-01_57_53

Theory : int_2


Home Index