Nuprl Lemma : test-mutual-corec_wf

test-mutual-corec() ∈ ℕ2 ⟶ Type


Proof




Definitions occuring in Statement :  test-mutual-corec: test-mutual-corec() int_seg: {i..j-} member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  test-mutual-corec: test-mutual-corec() member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] int_seg: {i..j-} all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k less_than: a < b squash: T true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  mutual-corec_wf false_wf le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int unit_wf2 int_seg_wf lelt_wf list_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis hypothesisEquality lambdaEquality setElimination rename unionElimination equalityElimination productElimination independent_isectElimination because_Cache unionEquality productEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination functionEquality universeEquality

Latex:
test-mutual-corec()  \mmember{}  \mBbbN{}2  {}\mrightarrow{}  Type



Date html generated: 2018_05_21-PM-00_31_19
Last ObjectModification: 2017_10_18-PM-06_38_23

Theory : int_2


Home Index