Nuprl Lemma : has-value-append

[l,k:Base].  (l)↓ supposing (l k)↓


Proof




Definitions occuring in Statement :  append: as bs has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a append: as bs list_ind: list_ind has-value: (a)↓ nat: implies:  Q false: False ge: i ≥  guard: {T} prop: all: x:A. B[x] subtype_rel: A ⊆B top: Top not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + cons: [a b]
Lemmas referenced :  top_wf has-value-implies-dec-ispair-2 fun_exp_unroll_1 base_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le bottom_diverge strictness-apply fun_exp0_lemma int_subtype_base has-value_wf_base less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis compactness thin lemma_by_obid isectElimination hypothesisEquality setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomSqleEquality baseApply closedConclusion baseClosed applyEquality because_Cache isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality intEquality minusEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality callbyvalueCallbyvalue callbyvalueReduce

Latex:
\mforall{}[l,k:Base].    (l)\mdownarrow{}  supposing  (l  @  k)\mdownarrow{}



Date html generated: 2016_05_14-AM-06_30_57
Last ObjectModification: 2016_01_14-PM-08_25_44

Theory : list_0


Home Index