Nuprl Lemma : bl-exists-filter

[P,Q,L:Top].  ((∃x∈filter(P;L).Q[x])_b (∃x∈L.(P x) ∧b Q[x])_b)


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b filter: filter(P;l) band: p ∧b q uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T filter: filter(P;l) reduce: reduce(f;k;as) bl-exists: (∃x∈L.P[x])_b so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T guard: {T} so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] top: Top ifthenelse: if then else fi  band: p ∧b q bor: p ∨bq bfalse: ff sq_type: SQType(T) uiff: uiff(P;Q) btrue: tt
Lemmas referenced :  sqequal-list_ind has-value_wf_base base_wf is-exception_wf sqle_wf_base bl-exists-nil top_wf has-value-ifthenelse-type bl-exists-cons equal_wf injection-eta isl_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot has-value-bor-type value-type-has-value union-value-type has-value-band-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin extract_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce callbyvalueExceptionCases inlFormation imageMemberEquality imageElimination exceptionSqequal inrFormation because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalAxiom divergentSqle equalityTransitivity equalitySymmetry unionEquality unionElimination sqleRule sqleReflexivity independent_functionElimination axiomSqleEquality instantiate cumulativity productElimination decideExceptionCases applyExceptionCases

Latex:
\mforall{}[P,Q,L:Top].    ((\mexists{}x\mmember{}filter(P;L).Q[x])\_b  \msim{}  (\mexists{}x\mmember{}L.(P  x)  \mwedge{}\msubb{}  Q[x])\_b)



Date html generated: 2017_04_17-AM-08_04_22
Last ObjectModification: 2017_02_27-PM-04_34_21

Theory : list_1


Home Index