Nuprl Lemma : concat-is-nil

[T:Type]. ∀[LL:T List List].  uiff(concat(LL) [] ∈ (T List);(∀L∈LL.L [] ∈ (T List)))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) concat: concat(ll) nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q concat: concat(ll) all: x:A. B[x] top: Top uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rev_implies:  Q iff: ⇐⇒ Q l_all: (∀x∈L.P[x])
Lemmas referenced :  list_induction list_wf uiff_wf equal-wf-T-base concat_wf l_all_wf l_member_wf reduce_nil_lemma reduce_cons_lemma l_all_cons int_seg_wf length_wf cons_wf length_of_nil_lemma l_all_nil nil_wf equal-wf-base l_all_wf_nil iff_weakening_uiff append_wf append_is_nil
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality baseClosed because_Cache setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation addLevel productElimination independent_pairFormation independent_isectElimination axiomEquality natural_numberEquality instantiate productEquality applyLambdaEquality independent_pairEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[LL:T  List  List].    uiff(concat(LL)  =  [];(\mforall{}L\mmember{}LL.L  =  []))



Date html generated: 2017_04_17-AM-08_51_58
Last ObjectModification: 2017_02_27-PM-05_08_34

Theory : list_1


Home Index