Nuprl Lemma : concat-is-nil
∀[T:Type]. ∀[LL:T List List].  uiff(concat(LL) = [] ∈ (T List);(∀L∈LL.L = [] ∈ (T List)))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
concat: concat(ll)
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
concat: concat(ll)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
list_induction, 
list_wf, 
uiff_wf, 
equal-wf-T-base, 
concat_wf, 
l_all_wf, 
l_member_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
l_all_cons, 
int_seg_wf, 
length_wf, 
cons_wf, 
length_of_nil_lemma, 
l_all_nil, 
nil_wf, 
equal-wf-base, 
l_all_wf_nil, 
iff_weakening_uiff, 
append_wf, 
append_is_nil
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
baseClosed, 
because_Cache, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
addLevel, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
axiomEquality, 
natural_numberEquality, 
instantiate, 
productEquality, 
applyLambdaEquality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[LL:T  List  List].    uiff(concat(LL)  =  [];(\mforall{}L\mmember{}LL.L  =  []))
Date html generated:
2017_04_17-AM-08_51_58
Last ObjectModification:
2017_02_27-PM-05_08_34
Theory : list_1
Home
Index