Nuprl Lemma : imax-list-filter-member

L:ℤ List. ∀P:ℤ ⟶ 𝔹.  (imax-list(filter(P;L)) ∈ L) supposing ¬(filter(P;L) [] ∈ (ℤ List))


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_member: (x ∈ l) filter: filter(P;l) nil: [] list: List bool: 𝔹 uimplies: supposing a all: x:A. B[x] not: ¬A function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: or: P ∨ Q cons: [a b] top: Top nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] iff: ⇐⇒ Q
Lemmas referenced :  equal-wf-T-base list_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf list-cases length_of_nil_lemma not_wf equal-wf-base product_subtype_list length_of_cons_lemma add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf list_subtype_base int_subtype_base imax-list-member filter_is_sublist member_sublist member_filter_2 imax-list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality voidElimination extract_by_obid isectElimination intEquality hypothesis applyEquality setEquality independent_isectElimination setElimination rename because_Cache baseClosed unionElimination independent_functionElimination equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion dependent_pairFormation int_eqEquality computeAll functionEquality

Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}P:\mBbbZ{}  {}\mrightarrow{}  \mBbbB{}.    (imax-list(filter(P;L))  \mmember{}  L)  supposing  \mneg{}(filter(P;L)  =  [])



Date html generated: 2017_04_17-AM-07_40_17
Last ObjectModification: 2017_02_27-PM-04_14_08

Theory : list_1


Home Index