Nuprl Lemma : l_before-sorted-by

[T:Type]
  ∀L:T List. ∀[R:{x:T| (x ∈ L)}  ⟶ {x:T| (x ∈ L)}  ⟶ ℙ]. (sorted-by(R;L)  (∀x,y:T.  (x before y ∈  (R y))))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) l_before: before y ∈ l l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l_before: before y ∈ l sublist: L1 ⊆ L2 exists: x:A. B[x] and: P ∧ Q member: t ∈ T top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q nat: guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) l_member: (x ∈ l) cand: c∧ B sorted-by: sorted-by(R;L) increasing: increasing(f;k)
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf l_before_wf sorted-by_wf l_member_wf list_wf list-subtype equal_wf select_wf int_seg_wf non_neg_length decidable__le length_wf_nat nat_properties int_seg_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed isectElimination because_Cache comment cumulativity functionExtensionality applyEquality setEquality functionEquality universeEquality equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality setElimination rename independent_isectElimination unionElimination independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll productEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[R:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            (sorted-by(R;L)  {}\mRightarrow{}  (\mforall{}x,y:T.    (x  before  y  \mmember{}  L  {}\mRightarrow{}  (R  x  y))))



Date html generated: 2017_04_17-AM-07_43_14
Last ObjectModification: 2017_02_27-PM-04_16_35

Theory : list_1


Home Index