Nuprl Lemma : last-decomp2

[l:Top List]. (l if (||l|| =z 0) then [] else firstn(||l|| 1;l) [last(l)] fi )


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) last: last(L) length: ||as|| append: as bs cons: [a b] nil: [] list: List ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False cons: [a b] ge: i ≥  le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) prop: decidable: Dec(P) nequal: a ≠ b ∈ 
Lemmas referenced :  eq_int_wf length_wf top_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int list_wf list-cases product_subtype_list length_of_cons_lemma le_weakening2 non_neg_length decidable__lt full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf last-decomp intformnot_wf intformless_wf int_formula_prop_not_lemma int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality natural_numberEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate because_Cache independent_functionElimination voidElimination axiomSqEquality universeIsType hypothesis_subsumption Error :memTop,  approximateComputation lambdaEquality_alt int_eqEquality independent_pairFormation

Latex:
\mforall{}[l:Top  List].  (l  \msim{}  if  (||l||  =\msubz{}  0)  then  []  else  firstn(||l||  -  1;l)  @  [last(l)]  fi  )



Date html generated: 2020_05_19-PM-09_44_00
Last ObjectModification: 2020_03_09-PM-00_43_04

Theory : list_1


Home Index