Nuprl Lemma : last-from-upto

[n,m:ℤ].  last([n, m)) supposing n < m


Proof




Definitions occuring in Statement :  from-upto: [n, m) last: last(L) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a last: last(L) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} bfalse: ff bnot: ¬bb assert: b subtract: m
Lemmas referenced :  length-from-upto lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int select-from-upto decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt subtract_wf lelt_wf subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_set_memberEquality independent_pairFormation dependent_functionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll instantiate cumulativity independent_functionElimination promote_hyp sqequalAxiom

Latex:
\mforall{}[n,m:\mBbbZ{}].    last([n,  m))  \msim{}  m  -  1  supposing  n  <  m



Date html generated: 2017_04_17-AM-07_55_07
Last ObjectModification: 2017_02_27-PM-04_26_50

Theory : list_1


Home Index