Nuprl Lemma : mklist_member

[T:Type]. ∀n:ℕ. ∀f:ℕn ⟶ T. ∀x:T.  ((x ∈ mklist(n;f)) ⇐⇒ ∃i:ℕn. (x (f i) ∈ T))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) l_member: (x ∈ l) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: nat: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B top: Top squash: T int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  l_member_wf mklist_wf int_seg_wf exists_wf equal_wf nat_wf mklist_length squash_wf true_wf mklist_select lelt_wf iff_weakening_equal int_seg_subtype_nat false_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf length_wf select_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality natural_numberEquality setElimination rename hypothesis because_Cache sqequalRule lambdaEquality functionEquality universeEquality productElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination dependent_pairFormation dependent_functionElimination unionElimination int_eqEquality intEquality computeAll productEquality

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  T.  \mforall{}x:T.    ((x  \mmember{}  mklist(n;f))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (x  =  (f  i)))



Date html generated: 2017_04_17-AM-08_45_18
Last ObjectModification: 2017_02_27-PM-05_03_52

Theory : list_1


Home Index