Nuprl Lemma : sum-as-accum2

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].
  (f[x] x < n) accumulate (with value and list item y):
                      f[y]
                     over list:
                       upto(n)
                     with starting value:
                      0))


Proof




Definitions occuring in Statement :  upto: upto(n) sum: Σ(f[x] x < k) list_accum: list_accum int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) list_accum: list_accum upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] sq_type: SQType(T) guard: {T} decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] less_than: a < b less_than': less_than'(a;b) true: True squash: T subtype_rel: A ⊆B nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  nat_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int lelt_wf decidable__lt list_accum_nil_lemma list_accum_cons_lemma subtype_rel_list list_accum_append upto_decomp1 subtype_rel_self int_seg_subtype subtype_rel_dep_function top_wf sum-unroll int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le upto_wf list_accum_wf int_subtype_base subtype_base_sq int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom functionEquality instantiate because_Cache addEquality applyEquality equalityTransitivity equalitySymmetry unionElimination lessCases imageMemberEquality baseClosed imageElimination productElimination dependent_set_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  <  n)  \msim{}  accumulate  (with  value  x  and  list  item  y):
                                            x  +  f[y]
                                          over  list:
                                              upto(n)
                                          with  starting  value:
                                            0))



Date html generated: 2016_05_14-PM-02_34_29
Last ObjectModification: 2016_01_15-AM-07_44_03

Theory : list_1


Home Index