Nuprl Lemma : fact-bound
∀n:ℕ. ((n)! ≤ n^n)
Proof
Definitions occuring in Statement : 
fact: (n)!
, 
exp: i^n
, 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
or: P ∨ Q
, 
decidable: Dec(P)
, 
fact: (n)!
, 
primrec: primrec(n;b;c)
, 
exp: i^n
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
Lemmas referenced : 
int_term_value_mul_lemma, 
itermMultiply_wf, 
nat_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
le_wf, 
false_wf, 
nat_plus_wf, 
fact_wf, 
exp_wf2, 
less_than'_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
fact_unroll_1, 
exp_step, 
exp_preserves_le, 
le_functionality, 
multiply_functionality_wrt_le, 
le_weakening, 
le_transitivity
Rules used in proof : 
multiplyEquality, 
unionElimination, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
because_Cache, 
independent_pairEquality, 
productElimination, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  ((n)!  \mleq{}  n\^{}n)
Date html generated:
2018_05_21-PM-01_05_00
Last ObjectModification:
2018_05_18-PM-04_16_45
Theory : num_thy_1
Home
Index