Nuprl Lemma : sum-of-three-cubes-iff-2

This solution to the problem of writing 33 as the sum of three cubes
was found around March 9, 2019 by Andrew Booker using 15 core-years
computation time (over three weeks real time) on super-computer in Bristol.

The smallest number for which it is unknown whether it is the sum of three
cubes is now 42 (and the next is 114).⋅

k:ℕ
  (∃a,b,c:ℤ(((a a) (b b) (c c)) k ∈ ℤ)
  ⇐⇒ ∃c:ℤ
       (((c c) k ∈ ℤ)
       ∨ (∃d:ℕ
           ((¬(d 0 ∈ ℤ))
           ∧ ((k rem d) 0 ∈ ℤ)
           ∧ (∃n:ℕ(((4 ((k c) ÷ d)) d) (3 n) ∈ ℤ))))))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q remainder: rem m divide: n ÷ m multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q or: P ∨ Q not: ¬A false: False decidable: Dec(P) cand: c∧ B ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: gt: i > j nat_plus: + subtract: m squash: T true: True guard: {T} int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  istype-int int_subtype_base set_subtype_base le_wf istype-void istype-nat decidable__le nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma istype-le decidable__lt intformless_wf int_formula_prop_less_lemma neg_mul_arg_bounds pos_mul_arg_bounds gt_wf itermMinus_wf int_term_value_minus_lemma exp_preserves_lt istype-less_than less_than_wf squash_wf true_wf exp2 subtype_rel_self iff_weakening_equal exp_step sum-of-three-cubes-iff-1 three-cubes-lemma divide_wfa subtract_wf nequal_wf itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation sqequalRule Error :productIsType,  cut introduction extract_by_obid hypothesis because_Cache Error :equalityIstype,  baseApply closedConclusion baseClosed hypothesisEquality applyEquality sqequalHypSubstitution isectElimination thin intEquality Error :lambdaEquality_alt,  natural_numberEquality Error :inhabitedIsType,  independent_isectElimination sqequalBase equalitySymmetry Error :unionIsType,  Error :functionIsType,  equalityTransitivity productElimination dependent_functionElimination addEquality unionElimination Error :dependent_pairFormation_alt,  setElimination rename approximateComputation independent_functionElimination int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  multiplyEquality Error :inlFormation_alt,  Error :inrFormation_alt,  minusEquality Error :dependent_set_memberEquality_alt,  imageElimination imageMemberEquality instantiate universeEquality

Latex:
\mforall{}k:\mBbbN{}
    (\mexists{}a,b,c:\mBbbZ{}.  (((a  *  a  *  a)  +  (b  *  b  *  b)  +  (c  *  c  *  c))  =  k)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}c:\mBbbZ{}
              (((c  *  c  *  c)  =  k)
              \mvee{}  (\mexists{}d:\mBbbN{}
                      ((\mneg{}(d  =  0))
                      \mwedge{}  ((k  -  c  *  c  *  c  rem  d)  =  0)
                      \mwedge{}  (\mexists{}n:\mBbbN{}.  (((4  *  ((k  -  c  *  c  *  c)  \mdiv{}  d))  -  d  *  d)  =  (3  *  n  *  n)))))))



Date html generated: 2019_06_20-PM-02_42_17
Last ObjectModification: 2019_03_16-PM-01_00_54

Theory : num_thy_1


Home Index