Nuprl Lemma : three-cubes-lemma

d,e:ℤ.
  (∃a,b:ℤ((((a a) ((b b) b)) e ∈ ℤ) ∧ ((a b) d ∈ ℤ))
  ⇐⇒ ∃n:ℕ(((4 e) d) (3 n) ∈ ℤ))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B rev_implies:  Q nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a squash: T prop: true: True guard: {T} sq_type: SQType(T) decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtract: m ge: i ≥  cand: c∧ B int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  int_subtype_base istype-nat set_subtype_base le_wf istype-int absval_wf subtract_wf equal_wf squash_wf true_wf istype-universe absval_squared subtype_rel_self iff_weakening_equal subtype_base_sq add-subtract-cancel decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf mul-distributes mul-distributes-right add-associates minus-add mul-associates minus-one-mul mul-swap mul-commutes add-swap add-commutes nat_properties intformand_wf itermAdd_wf itermMultiply_wf itermConstant_wf itermSubtract_wf int_formula_prop_and_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_subtract_lemma mod2-cases mod2-is-zero mod2-is-one add_functionality_wrt_eq minus-one-mul-top add-mul-special zero-mul add-zero mul_cancel_in_eq nequal_wf one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation sqequalHypSubstitution productElimination thin sqequalRule productIsType because_Cache equalityIstype baseApply closedConclusion baseClosed cut hypothesisEquality applyEquality introduction extract_by_obid hypothesis sqequalBase equalitySymmetry isectElimination intEquality lambdaEquality_alt natural_numberEquality inhabitedIsType independent_isectElimination dependent_pairFormation_alt multiplyEquality imageElimination equalityTransitivity universeIsType instantiate universeEquality imageMemberEquality independent_functionElimination promote_hyp cumulativity dependent_functionElimination unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination minusEquality addEquality setElimination rename inlFormation_alt inrFormation_alt dependent_set_memberEquality_alt

Latex:
\mforall{}d,e:\mBbbZ{}.
    (\mexists{}a,b:\mBbbZ{}.  ((((a  *  a)  +  ((b  *  b)  -  a  *  b))  =  e)  \mwedge{}  ((a  +  b)  =  d))
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (((4  *  e)  -  d  *  d)  =  (3  *  n  *  n)))



Date html generated: 2020_05_19-PM-10_04_16
Last ObjectModification: 2019_11_22-AM-10_51_31

Theory : num_thy_1


Home Index