Nuprl Lemma : prec-size-induction

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[Q:i:P ⟶ prec(lbl,p.a[lbl;p];i) ⟶ TYPE].
  ((∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  ((∀j:P. ∀z:{z:prec(lbl,p.a[lbl;p];j)| ||j;z|| < ||i;x||} .  Q[j;z])  Q[i;x]))
   (∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  Q[i;x]))


Proof




Definitions occuring in Statement :  prec-size: ||i;x|| prec: prec(lbl,p.a[lbl; p];i) list: List less_than: a < b uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  guard: {T} less_than: a < b squash: T less_than': less_than'(a;b) or: P ∨ Q decidable: Dec(P) le: A ≤ B lelt: i ≤ j < k prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  false: False int_seg: {i..j-} subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] all: x:A. B[x] nat: member: t ∈ T implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  le_witness_for_triv istype-universe list_wf int_term_value_add_lemma itermAdd_wf decidable__le istype-false int_seg_subtype_nat int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__lt subtract-1-ge-0 int_seg_properties istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties istype-nat prec-size_wf istype-le istype-atom prec_wf int_seg_wf
Rules used in proof :  applyLambdaEquality functionExtensionality imageElimination universeEquality cumulativity unionEquality instantiate TYPEIsType setIsType addEquality equalityIstype equalitySymmetry equalityTransitivity productIsType unionElimination dependent_set_memberEquality_alt productElimination functionIsTypeImplies axiomEquality independent_pairFormation voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination intWeakElimination TYPEMemberIsType inhabitedIsType applyEquality lambdaEquality_alt because_Cache functionIsType hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction universeIsType isectIsType sqequalRule cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[Q:i:P  {}\mrightarrow{}  prec(lbl,p.a[lbl;p];i)  {}\mrightarrow{}  TYPE].
    ((\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).
            ((\mforall{}j:P.  \mforall{}z:\{z:prec(lbl,p.a[lbl;p];j)|  ||j;z||  <  ||i;x||\}  .    Q[j;z])  {}\mRightarrow{}  Q[i;x]))
    {}\mRightarrow{}  (\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).    Q[i;x]))



Date html generated: 2019_10_15-AM-10_25_03
Last ObjectModification: 2019_09_26-PM-04_38_54

Theory : tuples


Home Index