Nuprl Lemma : prec-size-induction
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[Q:i:P ⟶ prec(lbl,p.a[lbl;p];i) ⟶ TYPE].
  ((∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  ((∀j:P. ∀z:{z:prec(lbl,p.a[lbl;p];j)| ||j;z|| < ||i;x||} .  Q[j;z]) 
⇒ Q[i;x]))
  
⇒ (∀i:P. ∀x:prec(lbl,p.a[lbl;p];i).  Q[i;x]))
Proof
Definitions occuring in Statement : 
prec-size: ||i;x||
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
false: False
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
le_witness_for_triv, 
istype-universe, 
list_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__le, 
istype-false, 
int_seg_subtype_nat, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__lt, 
subtract-1-ge-0, 
int_seg_properties, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
istype-nat, 
prec-size_wf, 
istype-le, 
istype-atom, 
prec_wf, 
int_seg_wf
Rules used in proof : 
applyLambdaEquality, 
functionExtensionality, 
imageElimination, 
universeEquality, 
cumulativity, 
unionEquality, 
instantiate, 
TYPEIsType, 
setIsType, 
addEquality, 
equalityIstype, 
equalitySymmetry, 
equalityTransitivity, 
productIsType, 
unionElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
functionIsTypeImplies, 
axiomEquality, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
intWeakElimination, 
TYPEMemberIsType, 
inhabitedIsType, 
applyEquality, 
lambdaEquality_alt, 
because_Cache, 
functionIsType, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
universeIsType, 
isectIsType, 
sqequalRule, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[Q:i:P  {}\mrightarrow{}  prec(lbl,p.a[lbl;p];i)  {}\mrightarrow{}  TYPE].
    ((\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).
            ((\mforall{}j:P.  \mforall{}z:\{z:prec(lbl,p.a[lbl;p];j)|  ||j;z||  <  ||i;x||\}  .    Q[j;z])  {}\mRightarrow{}  Q[i;x]))
    {}\mRightarrow{}  (\mforall{}i:P.  \mforall{}x:prec(lbl,p.a[lbl;p];i).    Q[i;x]))
Date html generated:
2019_10_15-AM-10_25_03
Last ObjectModification:
2019_09_26-PM-04_38_54
Theory : tuples
Home
Index