Nuprl Lemma : FormSet_wf2
∀[C:Type]. ∀[x:Atom]. ∀[phi:PZF-Formula(C)].  {x | phi} ∈ PZF-Term(C) supposing PZF-safe(phi;[x])
Proof
Definitions occuring in Statement : 
PZF-Formula: PZF-Formula(C), 
PZF-Term: PZF-Term(C), 
PZF-safe: PZF-safe(phi;vs), 
FormSet: {var | phi}, 
cons: [a / b], 
nil: [], 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
atom: Atom, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
PZF-Formula: PZF-Formula(C), 
PZF-Form: PZF-Form(C), 
PZF-Term: PZF-Term(C), 
and: P ∧ Q, 
cand: A c∧ B, 
wfForm: wfForm(f), 
termForm: termForm(f), 
wfFormAux: wfFormAux(f), 
FormSet: {var | phi}, 
Form_ind: Form_ind, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
SafeForm: SafeForm(f), 
prop: ℙ, 
assert: ↑b, 
true: True, 
squash: ↓T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
FormSet_wf, 
assert_wf, 
wfForm_wf, 
SafeForm_wf, 
termForm_wf, 
PZF-safe_wf, 
cons_wf, 
nil_wf, 
PZF-Formula_wf, 
squash_wf, 
true_wf, 
bool_wf, 
wfFormAux_wf, 
eqtt_to_assert, 
not_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
false_wf, 
assert_of_band, 
PZF_safe_wf, 
assert-PZF_safe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
productEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
hyp_replacement, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate
Latex:
\mforall{}[C:Type].  \mforall{}[x:Atom].  \mforall{}[phi:PZF-Formula(C)].    \{x  |  phi\}  \mmember{}  PZF-Term(C)  supposing  PZF-safe(phi;[x])
Date html generated:
2018_05_21-PM-11_37_39
Last ObjectModification:
2017_10_12-PM-04_50_14
Theory : PZF
Home
Index