Nuprl Lemma : bag-bind-append

[A,B:Type]. ∀[ba,bb:bag(A)]. ∀[f:A ⟶ bag(B)].  (bag-bind(ba bb;f) (bag-bind(ba;f) bag-bind(bb;f)) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-bind: bag-bind(bs;f) bag-append: as bs bag: bag(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q prop: all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] bag-bind: bag-bind(bs;f) bag-append: as bs append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bag-map: bag-map(f;bs) bag-union: bag-union(bbs) concat: concat(ll) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  bag_wf equal-wf-base list_wf permutation_wf equal_wf list_induction bag-bind_wf bag-append_wf list-subtype-bag list_ind_nil_lemma map_nil_lemma reduce_nil_lemma list_ind_cons_lemma map_cons_lemma reduce_cons_lemma bag-append-assoc2 squash_wf true_wf iff_weakening_equal quotient-member-eq permutation-equiv and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination rename hyp_replacement equalitySymmetry applyLambdaEquality productEquality because_Cache functionEquality isect_memberEquality axiomEquality universeEquality equalityTransitivity lambdaFormation dependent_functionElimination independent_functionElimination lambdaEquality applyEquality independent_isectElimination functionExtensionality voidElimination voidEquality equalityUniverse levelHypothesis natural_numberEquality imageElimination imageMemberEquality baseClosed dependent_set_memberEquality independent_pairFormation setElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[ba,bb:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].
    (bag-bind(ba  +  bb;f)  =  (bag-bind(ba;f)  +  bag-bind(bb;f)))



Date html generated: 2017_10_01-AM-09_05_55
Last ObjectModification: 2017_07_26-PM-04_46_05

Theory : bags


Home Index