Nuprl Lemma : bag-combine-mapfilter
∀[A,B,C:Type]. ∀[b:bag(A)]. ∀[P:A ⟶ 𝔹]. ∀[f:{x:A| ↑P[x]}  ⟶ B]. ∀[g:B ⟶ bag(C)].
  (⋃x∈bag-mapfilter(f;P;b).g[x] = ⋃x∈b.if P[x] then g[f[x]] else {} fi  ∈ bag(C))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x], 
bag-mapfilter: bag-mapfilter(f;P;bs), 
empty-bag: {}, 
bag: bag(T), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bag-mapfilter: bag-mapfilter(f;P;bs), 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bag_wf, 
bag-combine-map, 
assert_wf, 
bag-filter_wf, 
bag-combine_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
empty-bag_wf, 
iff_weakening_equal, 
bag-combine-filter
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
setEquality, 
cumulativity, 
functionExtensionality, 
sqequalRule, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
setElimination, 
rename, 
functionEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[b:bag(A)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:A|  \muparrow{}P[x]\}    {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  bag(C)].
    (\mcup{}x\mmember{}bag-mapfilter(f;P;b).g[x]  =  \mcup{}x\mmember{}b.if  P[x]  then  g[f[x]]  else  \{\}  fi  )
Date html generated:
2017_10_01-AM-08_47_43
Last ObjectModification:
2017_07_26-PM-04_32_07
Theory : bags
Home
Index