Nuprl Lemma : bag-combine-filter
ā[A,B:Type]. ā[p:A ā¶ š¹]. ā[f:{a:A| āp[a]} ā¶ bag(B)]. ā[ba:bag(A)].
(āaā[aāba|p[a]].f[a] = āaāba.if p[a] then f[a] else {} fi ā bag(B))
Proof
Definitions occuring in Statement :
bag-combine: āxābs.f[x]
,
bag-filter: [xāb|p[x]]
,
empty-bag: {}
,
bag: bag(T)
,
assert: āb
,
ifthenelse: if b then t else f fi
,
bool: š¹
,
uall: ā[x:A]. B[x]
,
so_apply: x[s]
,
set: {x:A| B[x]}
,
function: x:A ā¶ B[x]
,
universe: Type
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
member: t ā T
,
bag: bag(T)
,
quotient: x,y:A//B[x; y]
,
and: P ā§ Q
,
all: āx:A. B[x]
,
implies: P
ā Q
,
prop: ā
,
so_apply: x[s]
,
cand: A cā§ B
,
so_lambda: Ī»2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
bag-filter: [xāb|p[x]]
,
empty-bag: {}
,
bag-combine: āxābs.f[x]
,
bag-map: bag-map(f;bs)
,
bag-union: bag-union(bbs)
,
concat: concat(ll)
,
nat: ā
,
false: False
,
ge: i ā„ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: āx:A. B[x]
,
not: Ā¬A
,
top: Top
,
subtype_rel: A ār B
,
guard: {T}
,
or: P āØ Q
,
cons: [a / b]
,
colength: colength(L)
,
decidable: Dec(P)
,
nil: []
,
it: ā
,
so_lambda: Ī»2x.t[x]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: āT
,
less_than': less_than'(a;b)
,
bool: š¹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: Ā¬bb
,
assert: āb
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
bag-append: as + bs
,
true: True
Lemmas referenced :
bag_wf,
list_wf,
permutation_wf,
equal_wf,
equal-wf-base,
assert_wf,
bool_wf,
quotient-member-eq,
permutation-equiv,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
list-cases,
filter_nil_lemma,
map_nil_lemma,
reduce_nil_lemma,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
filter_cons_lemma,
map_cons_lemma,
reduce_cons_lemma,
empty-bag_wf,
eqtt_to_assert,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
list_ind_nil_lemma,
bag-append_wf,
squash_wf,
true_wf,
bag-combine_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
pointwiseFunctionalityForEquality,
extract_by_obid,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
hypothesis,
sqequalRule,
pertypeElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
lambdaFormation,
because_Cache,
rename,
dependent_functionElimination,
independent_functionElimination,
productEquality,
isect_memberEquality,
axiomEquality,
functionEquality,
setEquality,
applyEquality,
functionExtensionality,
lambdaEquality,
independent_isectElimination,
independent_pairFormation,
hyp_replacement,
applyLambdaEquality,
setElimination,
intWeakElimination,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
intEquality,
voidElimination,
voidEquality,
computeAll,
unionElimination,
promote_hyp,
hypothesis_subsumption,
dependent_set_memberEquality,
addEquality,
baseClosed,
instantiate,
imageElimination,
equalityElimination,
universeEquality,
imageMemberEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[p:A {}\mrightarrow{} \mBbbB{}]. \mforall{}[f:\{a:A| \muparrow{}p[a]\} {}\mrightarrow{} bag(B)]. \mforall{}[ba:bag(A)].
(\mcup{}a\mmember{}[a\mmember{}ba|p[a]].f[a] = \mcup{}a\mmember{}ba.if p[a] then f[a] else \{\} fi )
Date html generated:
2017_10_01-AM-08_47_29
Last ObjectModification:
2017_07_26-PM-04_31_59
Theory : bags
Home
Index