Nuprl Lemma : bag-combine-filter

[A,B:Type]. ∀[p:A ⟶ 𝔹]. ∀[f:{a:A| ↑p[a]}  ⟶ bag(B)]. ∀[ba:bag(A)].
  (⋃a∈[a∈ba|p[a]].f[a] = ⋃a∈ba.if p[a] then f[a] else {} fi  ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag-filter: [x∈b|p[x]] empty-bag: {} bag: bag(T) assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: so_apply: x[s] cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a bag-filter: [x∈b|p[x]] empty-bag: {} bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) bag-union: bag-union(bbs) concat: concat(ll) nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bag-append: as bs true: True
Lemmas referenced :  bag_wf list_wf permutation_wf equal_wf equal-wf-base assert_wf bool_wf quotient-member-eq permutation-equiv nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma map_nil_lemma reduce_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma map_cons_lemma reduce_cons_lemma empty-bag_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_ind_nil_lemma bag-append_wf squash_wf true_wf bag-combine_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename dependent_functionElimination independent_functionElimination productEquality isect_memberEquality axiomEquality functionEquality setEquality applyEquality functionExtensionality lambdaEquality independent_isectElimination independent_pairFormation hyp_replacement applyLambdaEquality setElimination intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll unionElimination promote_hyp hypothesis_subsumption dependent_set_memberEquality addEquality baseClosed instantiate imageElimination equalityElimination universeEquality imageMemberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[p:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{a:A|  \muparrow{}p[a]\}    {}\mrightarrow{}  bag(B)].  \mforall{}[ba:bag(A)].
    (\mcup{}a\mmember{}[a\mmember{}ba|p[a]].f[a]  =  \mcup{}a\mmember{}ba.if  p[a]  then  f[a]  else  \{\}  fi  )



Date html generated: 2017_10_01-AM-08_47_29
Last ObjectModification: 2017_07_26-PM-04_31_59

Theory : bags


Home Index