Nuprl Lemma : bag-filter-filter2

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[q:{x:T| ↑p[x]}  ⟶ 𝔹]. ∀[bs:bag(T)].
  ([x∈[x∈bs|p[x]]|q[x]] [x∈bs|p[x] ∧b q[x]] ∈ bag({x:T| ↑(p[x] ∧b q[x])} ))


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag: bag(T) band: p ∧b q assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff so_lambda: λ2x.t[x] subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) cand: c∧ B sq_type: SQType(T) guard: {T} assert: b true: True bag-filter: [x∈b|p[x]] top: Top
Lemmas referenced :  bag_to_squash_list equal_wf bag_wf assert_wf bool_wf eqtt_to_assert bag-filter_wf subtype_rel_bag subtype_rel_sets assert_of_band assert_elim subtype_base_sq bool_subtype_base set_wf filter-filter filter_wf4_2 list-subtype-bag l_member_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename hyp_replacement equalitySymmetry applyLambdaEquality setEquality cumulativity applyEquality functionExtensionality because_Cache lambdaFormation unionElimination equalityElimination sqequalRule independent_isectElimination dependent_set_memberEquality equalityTransitivity dependent_functionElimination independent_functionElimination lambdaEquality setElimination addLevel levelHypothesis instantiate natural_numberEquality independent_pairFormation functionEquality universeEquality isect_memberFormation isect_memberEquality axiomEquality voidElimination voidEquality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[q:\{x:T|  \muparrow{}p[x]\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].
    ([x\mmember{}[x\mmember{}bs|p[x]]|q[x]]  =  [x\mmember{}bs|p[x]  \mwedge{}\msubb{}  q[x]])



Date html generated: 2017_10_01-AM-08_45_26
Last ObjectModification: 2017_07_26-PM-04_30_42

Theory : bags


Home Index