Nuprl Lemma : bag-separate-merge
∀[as,bs:Top List]. (bag-separate(bag-merge(as;bs)) ~ <as, bs>)
Proof
Definitions occuring in Statement :
bag-separate: bag-separate(bs)
,
bag-merge: bag-merge(as;bs)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
top: Top
,
pair: <a, b>
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bag-merge: bag-merge(as;bs)
,
bag-separate: bag-separate(bs)
,
bag-mapfilter: bag-mapfilter(f;P;bs)
,
bag-map: bag-map(f;bs)
,
bag-append: as + bs
,
bag-filter: [x∈b|p[x]]
,
top: Top
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
or: P ∨ Q
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
isl: isl(x)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
btrue: tt
,
outl: outl(x)
,
bnot: ¬bb
,
outr: outr(x)
Lemmas referenced :
list_wf,
top_wf,
map_append_sq,
filter_append_sq,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
less_than_transitivity1,
less_than_irreflexivity,
list-cases,
map_nil_lemma,
filter_nil_lemma,
product_subtype_list,
spread_cons_lemma,
intformeq_wf,
itermAdd_wf,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
le_wf,
equal_wf,
subtract_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
decidable__equal_int,
map_cons_lemma,
filter_cons_lemma,
list_ind_nil_lemma,
list_ind_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
hypothesis,
sqequalAxiom,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
isect_memberEquality,
hypothesisEquality,
because_Cache,
voidElimination,
voidEquality,
lambdaFormation,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
independent_pairFormation,
computeAll,
independent_functionElimination,
applyEquality,
unionElimination,
promote_hyp,
hypothesis_subsumption,
productElimination,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_set_memberEquality,
addEquality,
baseClosed,
instantiate,
cumulativity,
imageElimination
Latex:
\mforall{}[as,bs:Top List]. (bag-separate(bag-merge(as;bs)) \msim{} <as, bs>)
Date html generated:
2017_10_01-AM-08_52_46
Last ObjectModification:
2017_07_26-PM-04_34_14
Theory : bags
Home
Index