Nuprl Lemma : concat-lifting-3-strict
∀[f:Top]. ∀[b:bag(Top)].
  ∀b':bag(Top)
    ((concat-lifting-3(f) {} b b' ~ {}) ∧ (concat-lifting-3(f) b {} b' ~ {}) ∧ (concat-lifting-3(f) b b' {} ~ {}))
Proof
Definitions occuring in Statement : 
concat-lifting-3: concat-lifting-3(f), 
empty-bag: {}, 
bag: bag(T), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
concat-lifting-3: concat-lifting-3(f), 
concat-lifting: concat-lifting(n;f;bags), 
concat-lifting-list: concat-lifting-list(n;bags), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
lifting-gen: lifting-gen(n;f), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
less_than: a < b, 
squash: ↓T, 
true: True, 
empty-bag: {}, 
bag-null: bag-null(bs), 
select: L[n], 
cons: [a / b], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
subtype_rel: A ⊆r B, 
subtract: n - m
Lemmas referenced : 
list_wf, 
bag-subtype-list, 
list-subtype-bag, 
null_wf, 
assert_wf, 
null_nil_lemma, 
lelt_wf, 
bag_union_empty_lemma, 
int_seg_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
length_of_nil_lemma, 
length_of_cons_lemma, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
nil_wf, 
empty-bag_wf, 
cons_wf, 
top_wf, 
bag_wf, 
select_wf, 
le_wf, 
false_wf, 
lifting-gen-strict
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
independent_pairEquality, 
sqequalAxiom, 
imageMemberEquality, 
baseClosed, 
applyEquality
Latex:
\mforall{}[f:Top].  \mforall{}[b:bag(Top)].
    \mforall{}b':bag(Top)
        ((concat-lifting-3(f)  \{\}  b  b'  \msim{}  \{\})
        \mwedge{}  (concat-lifting-3(f)  b  \{\}  b'  \msim{}  \{\})
        \mwedge{}  (concat-lifting-3(f)  b  b'  \{\}  \msim{}  \{\}))
Date html generated:
2016_05_15-PM-03_08_37
Last ObjectModification:
2016_01_16-AM-08_35_53
Theory : bags
Home
Index