Nuprl Lemma : lifting-gen-strict

[n:ℕ]. ∀[f:Top]. ∀[a:k:ℕn ⟶ bag(Top)].  lifting-gen(n;f) {} supposing ∃k:ℕn. (↑bag-null(a k))


Proof




Definitions occuring in Statement :  lifting-gen: lifting-gen(n;f) bag-null: bag-null(bs) empty-bag: {} bag: bag(T) int_seg: {i..j-} nat: assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  lifting-gen: lifting-gen(n;f) lifting-gen-rev: lifting-gen-rev(n;f;bags) all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s] guard: {T} decidable: Dec(P) or: P ∨ Q lifting-gen-list-rev: lifting-gen-list-rev(n;bags) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exists_wf int_seg_wf assert_wf bag-null_wf top_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf bag_wf le_wf subtract_wf nat_wf int_seg_properties decidable__le intformnot_wf int_formula_prop_not_lemma eq_int_wf bool_wf uiff_transitivity equal-wf-T-base equal_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot itermAdd_wf int_term_value_add_lemma decidable__equal_int bag-combine-empty-left bag-combine-empty-right decidable__lt false_wf assert-bag-null equal-empty-bag
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache applyEquality functionExtensionality productElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry functionEquality isect_memberFormation unionElimination equalityElimination baseClosed impliesFunctionality addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].  \mforall{}[a:k:\mBbbN{}n  {}\mrightarrow{}  bag(Top)].    lifting-gen(n;f)  a  \msim{}  \{\}  supposing  \mexists{}k:\mBbbN{}n.  (\muparrow{}bag-null(a  k))



Date html generated: 2017_10_01-AM-09_03_01
Last ObjectModification: 2017_07_26-PM-04_44_01

Theory : bags


Home Index