Nuprl Lemma : lifting-gen-strict
∀[n:ℕ]. ∀[f:Top]. ∀[a:k:ℕn ⟶ bag(Top)].  lifting-gen(n;f) a ~ {} supposing ∃k:ℕn. (↑bag-null(a k))
Proof
Definitions occuring in Statement : 
lifting-gen: lifting-gen(n;f)
, 
bag-null: bag-null(bs)
, 
empty-bag: {}
, 
bag: bag(T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
lifting-gen: lifting-gen(n;f)
, 
lifting-gen-rev: lifting-gen-rev(n;f;bags)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than': less_than'(a;b)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
exists_wf, 
int_seg_wf, 
assert_wf, 
bag-null_wf, 
top_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
bag_wf, 
le_wf, 
subtract_wf, 
nat_wf, 
int_seg_properties, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
equal_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__equal_int, 
bag-combine-empty-left, 
bag-combine-empty-right, 
decidable__lt, 
false_wf, 
assert-bag-null, 
equal-empty-bag
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
because_Cache, 
applyEquality, 
functionExtensionality, 
productElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberFormation, 
unionElimination, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
addEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].  \mforall{}[a:k:\mBbbN{}n  {}\mrightarrow{}  bag(Top)].    lifting-gen(n;f)  a  \msim{}  \{\}  supposing  \mexists{}k:\mBbbN{}n.  (\muparrow{}bag-null(a  k))
Date html generated:
2017_10_01-AM-09_03_01
Last ObjectModification:
2017_07_26-PM-04_44_01
Theory : bags
Home
Index