Nuprl Lemma : bag-lub-comm

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:bag(T)].  (bag-lub(eq;as;bs) bag-lub(eq;bs;as) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-lub: bag-lub(eq;b1;b2) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-lub: bag-lub(eq;b1;b2) squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat: label: ...$L... t all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf bag-to-set_wf bag-append-comm bag-append_wf iff_weakening_equal bag-rep_wf nat_wf imax_com bag-count_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf imax_nat nat_properties decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf list-subtype-bag imax_wf bag-combine_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis because_Cache sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality applyEquality lambdaEquality imageElimination extract_by_obid equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed cumulativity universeEquality independent_isectElimination productElimination independent_functionElimination setElimination rename dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality lambdaFormation applyLambdaEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:bag(T)].    (bag-lub(eq;as;bs)  =  bag-lub(eq;bs;as))



Date html generated: 2018_05_21-PM-09_52_19
Last ObjectModification: 2017_07_26-PM-06_31_48

Theory : bags_2


Home Index