Nuprl Lemma : accum_filter_rel_nil
∀[T,A:Type]. ∀[a,b:A]. ∀[P,f:Top].  uiff(b = accum(z,x.f[z;x],a,{x∈[]|P[x]});b = a ∈ A)
Proof
Definitions occuring in Statement : 
accum_filter_rel: b = accum(z,x.f[z; x],a,{x∈X|P[x]})
, 
nil: []
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
accum_filter_rel: b = accum(z,x.f[z; x],a,{x∈X|P[x]})
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
top: Top
, 
or: P ∨ Q
, 
cons: [a / b]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
accum_filter_rel_wf, 
nil_wf, 
l_member_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
sublist_wf, 
all_wf, 
iff_wf, 
list_wf, 
equal_wf, 
top_wf, 
nil-sublist, 
list_accum_nil_lemma, 
list-cases, 
product_subtype_list, 
list_accum_cons_lemma, 
cons_wf, 
sublist_nil, 
and_wf, 
null_wf3, 
subtype_rel_list, 
null_cons_lemma, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
setEquality, 
dependent_functionElimination, 
axiomEquality, 
productEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
universeEquality, 
voidEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
applyEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[a,b:A].  \mforall{}[P,f:Top].    uiff(b  =  accum(z,x.f[z;x],a,\{x\mmember{}[]|P[x]\});b  =  a)
Date html generated:
2016_05_15-PM-04_33_01
Last ObjectModification:
2015_12_27-PM-02_48_34
Theory : general
Home
Index