Nuprl Lemma : accum_filter_rel_nil

[T,A:Type]. ∀[a,b:A]. ∀[P,f:Top].  uiff(b accum(z,x.f[z;x],a,{x∈[]|P[x]});b a ∈ A)


Proof




Definitions occuring in Statement :  accum_filter_rel: accum(z,x.f[z; x],a,{x∈X|P[x]}) nil: [] uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: so_lambda: λ2x.t[x] all: x:A. B[x] not: ¬A implies:  Q false: False so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] accum_filter_rel: accum(z,x.f[z; x],a,{x∈X|P[x]}) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B top: Top or: P ∨ Q cons: [a b] subtype_rel: A ⊆B
Lemmas referenced :  accum_filter_rel_wf nil_wf l_member_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse sublist_wf all_wf iff_wf list_wf equal_wf top_wf nil-sublist list_accum_nil_lemma list-cases product_subtype_list list_accum_cons_lemma cons_wf sublist_nil and_wf null_wf3 subtype_rel_list null_cons_lemma bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis sqequalRule lambdaEquality lambdaFormation setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination setEquality dependent_functionElimination axiomEquality productEquality productElimination independent_pairEquality isect_memberEquality universeEquality voidEquality unionElimination promote_hyp hypothesis_subsumption dependent_set_memberEquality applyEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[a,b:A].  \mforall{}[P,f:Top].    uiff(b  =  accum(z,x.f[z;x],a,\{x\mmember{}[]|P[x]\});b  =  a)



Date html generated: 2016_05_15-PM-04_33_01
Last ObjectModification: 2015_12_27-PM-02_48_34

Theory : general


Home Index