Nuprl Lemma : exists-type-equating-ints

x,y,n,m:ℤ.
  ((¬(x y ∈ ℤ))
   (n m ∈ ℤ))
   (x m ∈ ℤ))
   (y n ∈ ℤ))
   (∃T:Type. ((x n ∈ T) ∧ (y m ∈ T) ∧ (x y ∈ T)))))


Proof




Definitions occuring in Statement :  all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  btrue: tt decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top guard: {T} true: True bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b pi2: snd(t) cand: c∧ B quotient: x,y:A//B[x; y] squash: T
Lemmas referenced :  not_wf equal-wf-base int_subtype_base b-union_wf quotient_wf or_wf true_wf equiv_rel_true btrue_wf quotient-member-eq decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bfalse_wf b-union-equality-disjoint isect2_wf isect2_decomp false_wf intformand_wf int_formula_prop_and_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality applyEquality hypothesis sqequalRule dependent_pairFormation setEquality because_Cache lambdaEquality setElimination rename independent_isectElimination independent_pairFormation productEquality imageMemberEquality dependent_pairEquality dependent_functionElimination dependent_set_memberEquality inlFormation unionElimination natural_numberEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll inrFormation independent_functionElimination equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity baseClosed pointwiseFunctionality pertypeElimination applyLambdaEquality imageElimination

Latex:
\mforall{}x,y,n,m:\mBbbZ{}.
    ((\mneg{}(x  =  y))
    {}\mRightarrow{}  (\mneg{}(n  =  m))
    {}\mRightarrow{}  (\mneg{}(x  =  m))
    {}\mRightarrow{}  (\mneg{}(y  =  n))
    {}\mRightarrow{}  (\mexists{}T:Type.  ((x  =  n)  \mwedge{}  (y  =  m)  \mwedge{}  (\mneg{}(x  =  y)))))



Date html generated: 2017_10_01-AM-09_07_31
Last ObjectModification: 2017_07_26-PM-04_46_48

Theory : general


Home Index