Nuprl Lemma : first_index-positive

[T:Type]. ∀P:T ⟶ 𝔹. ∀L:T List.  (0 < index-of-first in L.P[x] ⇐⇒ (∃x∈L. ↑P[x]))


Proof




Definitions occuring in Statement :  first_index: index-of-first in L.P[x] l_exists: (∃x∈L. P[x]) list: List assert: b bool: 𝔹 less_than: a < b uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] first_index: index-of-first in L.P[x] member: t ∈ T so_apply: x[s] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] l_exists: (∃x∈L. P[x])
Lemmas referenced :  bool_wf list_wf l_member_wf l_exists_wf assert_wf exists_wf iff_wf search_wf less_than_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties select_wf length_wf_nat search_property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis lambdaEquality applyEquality cumulativity setElimination rename independent_isectElimination natural_numberEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache imageElimination addLevel impliesFunctionality independent_functionElimination setEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    (0  <  index-of-first  x  in  L.P[x]  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  \muparrow{}P[x]))



Date html generated: 2016_05_15-PM-03_24_59
Last ObjectModification: 2016_01_16-AM-10_48_21

Theory : general


Home Index