Nuprl Lemma : gcd-prime
∀[p:ℕ]. ∀[n:{1..p-}]. (gcd(n;p) = 1 ∈ ℤ) supposing prime(p)
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
gcd: gcd(a;b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
gcd_p: GCD(a;b;y)
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
int_seg_subtype_nat_plus, 
le_wf, 
divisor_bound, 
int_term_value_minus_lemma, 
itermMinus_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__le, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
int_seg_properties, 
false_wf, 
int_seg_subtype_nat, 
gcd-positive, 
assoced_wf, 
equal_wf, 
or_wf, 
assoced_elim, 
gcd_wf, 
nat_wf, 
prime_wf, 
int_seg_wf, 
gcd_sat_gcd_p, 
prime_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
because_Cache, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
orFunctionality, 
intEquality, 
minusEquality, 
promote_hyp, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality
Latex:
\mforall{}[p:\mBbbN{}].  \mforall{}[n:\{1..p\msupminus{}\}].  (gcd(n;p)  =  1)  supposing  prime(p)
Date html generated:
2016_05_15-PM-06_21_09
Last ObjectModification:
2016_01_16-PM-00_54_33
Theory : general
Home
Index