Nuprl Lemma : gcd-prime

[p:ℕ]. ∀[n:{1..p-}]. (gcd(n;p) 1 ∈ ℤsupposing prime(p)


Proof




Definitions occuring in Statement :  prime: prime(a) gcd: gcd(a;b) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q and: P ∧ Q int_seg: {i..j-} gcd_p: GCD(a;b;y) prop: iff: ⇐⇒ Q or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  int_seg_subtype_nat_plus le_wf divisor_bound int_term_value_minus_lemma itermMinus_wf int_formula_prop_eq_lemma intformeq_wf decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties int_seg_properties false_wf int_seg_subtype_nat gcd-positive assoced_wf equal_wf or_wf assoced_elim gcd_wf nat_wf prime_wf int_seg_wf gcd_sat_gcd_p prime_elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality independent_functionElimination hypothesis productElimination because_Cache isectElimination natural_numberEquality sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry addLevel orFunctionality intEquality minusEquality promote_hyp applyEquality independent_isectElimination independent_pairFormation lambdaFormation unionElimination dependent_pairFormation lambdaEquality int_eqEquality voidElimination voidEquality computeAll dependent_set_memberEquality

Latex:
\mforall{}[p:\mBbbN{}].  \mforall{}[n:\{1..p\msupminus{}\}].  (gcd(n;p)  =  1)  supposing  prime(p)



Date html generated: 2016_05_15-PM-06_21_09
Last ObjectModification: 2016_01_16-PM-00_54_33

Theory : general


Home Index