Nuprl Lemma : isl-prior

[T:Type]
  ∀f:ℕ ⟶ (T Top). ∀n:ℕ.
    let m,x outl(prior(n;f)) 
    in ((f m) (inl x) ∈ (T Top)) ∧ (∀k:{m 1..n-}. (¬↑isl(f k))) 
    supposing ↑isl(prior(n;f))


Proof




Definitions occuring in Statement :  prior: prior(n;f) int_seg: {i..j-} nat: outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] spread: spread def inl: inl x union: left right add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt uimplies: supposing a true: True prop: and: P ∧ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} so_lambda: λ2x.t[x] guard: {T} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] bfalse: ff
Lemmas referenced :  prior-cases prior_wf nat_wf int_seg_wf unit_wf2 true_wf equal_wf top_wf int_seg_subtype_nat false_wf all_wf not_wf assert_wf isl_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination cumulativity functionExtensionality applyEquality unionEquality productEquality natural_numberEquality setElimination rename unionElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_pairFormation inlEquality because_Cache addEquality lambdaEquality applyLambdaEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  (T  +  Top).  \mforall{}n:\mBbbN{}.
        let  m,x  =  outl(prior(n;f)) 
        in  ((f  m)  =  (inl  x))  \mwedge{}  (\mforall{}k:\{m  +  1..n\msupminus{}\}.  (\mneg{}\muparrow{}isl(f  k))) 
        supposing  \muparrow{}isl(prior(n;f))



Date html generated: 2017_10_01-AM-09_12_10
Last ObjectModification: 2017_07_26-PM-04_47_56

Theory : general


Home Index