Nuprl Lemma : prior_wf
∀[T:Type]. ∀[f:ℕ ⟶ (T + Top)]. ∀[n:ℕ].  (prior(n;f) ∈ ℕn × T?)
Proof
Definitions occuring in Statement : 
prior: prior(n;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prior: prior(n;f)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
ge: i ≥ j 
, 
int_upper: {i...}
, 
has-value: (a)↓
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
Lemmas referenced : 
natrec_wf, 
int_seg_wf, 
unit_wf2, 
nat_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
it_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
nat_properties, 
nequal-le-implies, 
zero-add, 
value-type-has-value, 
int-value-type, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
top_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
subtype_rel_union, 
subtype_rel_product, 
int_seg_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
unionEquality, 
productEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
inrEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
independent_pairFormation, 
callbyvalueReduce, 
intEquality, 
applyEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
inlEquality, 
independent_pairEquality, 
functionExtensionality, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  (T  +  Top)].  \mforall{}[n:\mBbbN{}].    (prior(n;f)  \mmember{}  \mBbbN{}n  \mtimes{}  T?)
Date html generated:
2017_10_01-AM-09_12_01
Last ObjectModification:
2017_07_26-PM-04_47_50
Theory : general
Home
Index