Nuprl Lemma : prior_wf

[T:Type]. ∀[f:ℕ ⟶ (T Top)]. ∀[n:ℕ].  (prior(n;f) ∈ ℕn × T?)


Proof




Definitions occuring in Statement :  prior: prior(n;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top unit: Unit member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prior: prior(n;f) so_lambda: λ2x.t[x] nat: so_apply: x[s] so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} has-value: (a)↓ decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B so_apply: x[s1;s2]
Lemmas referenced :  natrec_wf int_seg_wf unit_wf2 nat_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int it_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add value-type-has-value int-value-type subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf top_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf subtype_rel_union subtype_rel_product int_seg_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality unionEquality productEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis cumulativity because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination inrEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation callbyvalueReduce intEquality applyEquality int_eqEquality isect_memberEquality voidEquality computeAll inlEquality independent_pairEquality functionExtensionality functionEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  (T  +  Top)].  \mforall{}[n:\mBbbN{}].    (prior(n;f)  \mmember{}  \mBbbN{}n  \mtimes{}  T?)



Date html generated: 2017_10_01-AM-09_12_01
Last ObjectModification: 2017_07_26-PM-04_47_50

Theory : general


Home Index