Nuprl Lemma : prior_wf
∀[T:Type]. ∀[f:ℕ ⟶ (T + Top)]. ∀[n:ℕ]. (prior(n;f) ∈ ℕn × T?)
Proof
Definitions occuring in Statement :
prior: prior(n;f)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
top: Top
,
unit: Unit
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
union: left + right
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prior: prior(n;f)
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exposed-bfalse: exposed-bfalse
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
,
ge: i ≥ j
,
int_upper: {i...}
,
has-value: (a)↓
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
Lemmas referenced :
natrec_wf,
int_seg_wf,
unit_wf2,
nat_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
it_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
int_upper_subtype_nat,
false_wf,
le_wf,
nat_properties,
nequal-le-implies,
zero-add,
value-type-has-value,
int-value-type,
subtract_wf,
int_upper_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
top_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
lelt_wf,
subtype_rel_union,
subtype_rel_product,
int_seg_subtype
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
sqequalRule,
lambdaEquality,
unionEquality,
productEquality,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
cumulativity,
because_Cache,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
inrEquality,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
independent_functionElimination,
voidElimination,
hypothesis_subsumption,
dependent_set_memberEquality,
independent_pairFormation,
callbyvalueReduce,
intEquality,
applyEquality,
int_eqEquality,
isect_memberEquality,
voidEquality,
computeAll,
inlEquality,
independent_pairEquality,
functionExtensionality,
functionEquality,
axiomEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[f:\mBbbN{} {}\mrightarrow{} (T + Top)]. \mforall{}[n:\mBbbN{}]. (prior(n;f) \mmember{} \mBbbN{}n \mtimes{} T?)
Date html generated:
2017_10_01-AM-09_12_01
Last ObjectModification:
2017_07_26-PM-04_47_50
Theory : general
Home
Index