Nuprl Lemma : list_accum_pair-sq

[T,A,B:Type]. ∀[f:A ⟶ T ⟶ A]. ∀[g:B ⟶ T ⟶ B]. ∀[L:T List]. ∀[a0:A]. ∀[b0:B].
  (list_accum_pair(a,x.f[a;x];b,x.g[b;x];a0;b0;L) ~ <accumulate (with value and list item x):
                                                      f[a;x]
                                                     over list:
                                                       L
                                                     with starting value:
                                                      a0)
                                                    accumulate (with value and list item x):
                                                       g[b;x]
                                                      over list:
                                                        L
                                                      with starting value:
                                                       b0)
                                                    >)


Proof




Definitions occuring in Statement :  list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L) list_accum: list_accum list: List uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] pair: <a, b> universe: Type sqequal: t
Definitions unfolded in proof :  list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_accum_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_accum_cons_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality functionEquality universeEquality

Latex:
\mforall{}[T,A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[g:B  {}\mrightarrow{}  T  {}\mrightarrow{}  B].  \mforall{}[L:T  List].  \mforall{}[a0:A].  \mforall{}[b0:B].
    (list\_accum\_pair(a,x.f[a;x];b,x.g[b;x];a0;b0;L)  \msim{}  <accumulate  (with  value  a  and  list  item  x):
                                                                                                            f[a;x]
                                                                                                          over  list:
                                                                                                              L
                                                                                                          with  starting  value:
                                                                                                            a0)
                                                                                                        ,  accumulate  (with  value  b  and  list  item  x):
                                                                                                              g[b;x]
                                                                                                            over  list:
                                                                                                                L
                                                                                                            with  starting  value:
                                                                                                              b0)
                                                                                                        >)



Date html generated: 2018_05_21-PM-06_45_51
Last ObjectModification: 2017_07_26-PM-04_55_41

Theory : general


Home Index