Nuprl Lemma : product-equipollent-tuple2
∀[A:Type]. ∀L:Type List. A × tuple-type(L) ~ tuple-type([A / L])
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
tuple-type: tuple-type(L), 
cons: [a / b], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
tupletype_cons_lemma, 
null_wf3, 
subtype_rel_list, 
top_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
list_wf, 
tuple-type_wf, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
length_wf_nat, 
nat_wf, 
tupletype_nil_lemma, 
equipollent_wf, 
unit_wf2, 
equipollent-identity, 
equipollent_functionality_wrt_equipollent, 
equipollent-product-com
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
lambdaFormation, 
isectElimination, 
because_Cache, 
applyEquality, 
instantiate, 
universeEquality, 
cumulativity, 
independent_isectElimination, 
lambdaEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
hypothesisEquality, 
dependent_pairFormation, 
promote_hyp, 
independent_functionElimination, 
baseClosed, 
productEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[A:Type].  \mforall{}L:Type  List.  A  \mtimes{}  tuple-type(L)  \msim{}  tuple-type([A  /  L])
Date html generated:
2018_05_21-PM-08_04_07
Last ObjectModification:
2017_07_26-PM-05_40_13
Theory : general
Home
Index