Nuprl Lemma : product-equipollent-tuple2

[A:Type]. ∀L:Type List. A × tuple-type(L) tuple-type([A L])


Proof




Definitions occuring in Statement :  equipollent: B tuple-type: tuple-type(L) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  tupletype_cons_lemma null_wf3 subtype_rel_list top_wf bool_wf eqtt_to_assert assert_of_null eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base list_wf tuple-type_wf equipollent_weakening_ext-eq ext-eq_weakening length_wf_nat nat_wf tupletype_nil_lemma equipollent_wf unit_wf2 equipollent-identity equipollent_functionality_wrt_equipollent equipollent-product-com
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation isectElimination because_Cache applyEquality instantiate universeEquality cumulativity independent_isectElimination lambdaEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination hypothesisEquality dependent_pairFormation promote_hyp independent_functionElimination baseClosed productEquality dependent_set_memberEquality hyp_replacement applyLambdaEquality setElimination rename

Latex:
\mforall{}[A:Type].  \mforall{}L:Type  List.  A  \mtimes{}  tuple-type(L)  \msim{}  tuple-type([A  /  L])



Date html generated: 2018_05_21-PM-08_04_07
Last ObjectModification: 2017_07_26-PM-05_40_13

Theory : general


Home Index