Nuprl Lemma : quicksort-int-single

[n:ℤ]. (quicksort-int([n]) [n])


Proof




Definitions occuring in Statement :  quicksort-int: quicksort-int(L) cons: [a b] nil: [] uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] quicksort-int: quicksort-int(L) quicksort: quicksort(cmp;L) all: x:A. B[x] top: Top ifthenelse: if then else fi  bfalse: ff callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: sq_type: SQType(T) guard: {T} evalall: evalall(t) lt_int: i <j nil: [] it: eq_int: (i =z j) btrue: tt append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] and: P ∧ Q cand: c∧ B
Lemmas referenced :  permutation_wf l_member_wf sorted-by_wf and_wf permutation_weakening le_wf sorted-by-single list_ind_cons_lemma list_ind_nil_lemma quicksort-int-nil nil_wf cons_wf list-valueall-type list_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermSubtract_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int evalall-reduce int-valueall-type valueall-type-has-valueall filter_nil_lemma filter_cons_lemma reduce_hd_cons_lemma null_cons_lemma int_subtype_base list_subtype_base set_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination sqequalRule hypothesis dependent_functionElimination isect_memberEquality voidElimination voidEquality intEquality hypothesisEquality callbyvalueReduce unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination sqleReflexivity independent_pairFormation dependent_set_memberEquality setElimination rename setEquality sqequalAxiom

Latex:
\mforall{}[n:\mBbbZ{}].  (quicksort-int([n])  \msim{}  [n])



Date html generated: 2016_05_15-PM-04_30_38
Last ObjectModification: 2016_01_16-AM-11_15_17

Theory : general


Home Index