Nuprl Lemma : select-add-indices
∀[T:Type]. ∀[L:T List]. ∀[i:ℕ||L||].  (add-indices(L)[i] = <i, L[i]> ∈ (ℕ||L|| × T))
Proof
Definitions occuring in Statement : 
add-indices: add-indices(L), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
pair: <a, b>, 
product: x:A × B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
add-indices: add-indices(L), 
top: Top, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
prop: ℙ, 
squash: ↓T, 
guard: {T}, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
cand: A c∧ B, 
ge: i ≥ j , 
nat: ℕ, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
label: ...$L... t
Lemmas referenced : 
select-map, 
upto_wf, 
length_wf, 
subtype_rel_list, 
top_wf, 
length_upto, 
length_wf_nat, 
lelt_wf, 
int_seg_wf, 
equal_wf, 
squash_wf, 
true_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
le_wf, 
less_than_wf, 
select_upto, 
non_neg_length, 
nat_properties, 
iff_weakening_equal, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
natural_numberEquality, 
independent_pairEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
applyLambdaEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}||L||].    (add-indices(L)[i]  =  <i,  L[i]>)
Date html generated:
2018_05_21-PM-07_33_15
Last ObjectModification:
2017_07_26-PM-05_08_09
Theory : general
Home
Index