Nuprl Lemma : select-add-indices

[T:Type]. ∀[L:T List]. ∀[i:ℕ||L||].  (add-indices(L)[i] = <i, L[i]> ∈ (ℕ||L|| × T))


Proof




Definitions occuring in Statement :  add-indices: add-indices(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] pair: <a, b> product: x:A × B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T add-indices: add-indices(L) top: Top subtype_rel: A ⊆B uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b prop: squash: T guard: {T} all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A cand: c∧ B ge: i ≥  nat: true: True iff: ⇐⇒ Q rev_implies:  Q label: ...$L... t
Lemmas referenced :  select-map upto_wf length_wf subtype_rel_list top_wf length_upto length_wf_nat lelt_wf int_seg_wf equal_wf squash_wf true_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma le_wf less_than_wf select_upto non_neg_length nat_properties iff_weakening_equal decidable__equal_int intformeq_wf int_formula_prop_eq_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality cumulativity hypothesisEquality hypothesis applyEquality because_Cache independent_isectElimination lambdaEquality setElimination rename dependent_set_memberEquality productElimination independent_pairFormation imageElimination equalityTransitivity equalitySymmetry productEquality natural_numberEquality independent_pairEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll applyLambdaEquality independent_functionElimination imageMemberEquality baseClosed universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}||L||].    (add-indices(L)[i]  =  <i,  L[i]>)



Date html generated: 2018_05_21-PM-07_33_15
Last ObjectModification: 2017_07_26-PM-05_08_09

Theory : general


Home Index