Nuprl Lemma : split-at-first

[T:Type]. ∀[P:T ⟶ ℙ].
  ((∀x:T. Dec(P[x]))
   (∀L:T List. ∃X,Y:T List. ((L (X Y) ∈ (T List)) ∧ (∀x∈X.¬P[x]) ∧ P[hd(Y)] supposing ||Y|| ≥ )))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) hd: hd(l) length: ||as|| append: as bs list: List decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] ge: i ≥  all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B uimplies: supposing a ge: i ≥  le: A ≤ B not: ¬A false: False less_than': less_than'(a;b) true: True subtype_rel: A ⊆B exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction exists_wf list_wf equal_wf append_wf length_wf length-append all_wf decidable_wf nil_wf list_ind_nil_lemma length_of_nil_lemma l_all_nil less_than'_wf ge_wf equal-wf-base-T l_all_wf2 not_wf l_member_wf hd_wf cons_wf length_of_cons_lemma reduce_hd_cons_lemma list_ind_cons_lemma squash_wf true_wf iff_weakening_equal l_all_cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache productEquality applyLambdaEquality isect_memberEquality voidElimination voidEquality independent_functionElimination rename dependent_functionElimination applyEquality functionExtensionality functionEquality universeEquality independent_pairFormation productElimination independent_pairEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry baseClosed setElimination setEquality isectEquality independent_isectElimination dependent_pairFormation unionElimination addEquality imageElimination equalityUniverse levelHypothesis imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  Dec(P[x]))
    {}\mRightarrow{}  (\mforall{}L:T  List.  \mexists{}X,Y:T  List.  ((L  =  (X  @  Y))  \mwedge{}  (\mforall{}x\mmember{}X.\mneg{}P[x])  \mwedge{}  P[hd(Y)]  supposing  ||Y||  \mgeq{}  1  )))



Date html generated: 2018_05_21-PM-07_40_09
Last ObjectModification: 2017_07_26-PM-05_14_18

Theory : general


Home Index