Nuprl Lemma : star-append-iff
∀[T:Type]. ∀[P,Q:(T List) ⟶ ℙ].
  ∀L:T List
    (star-append(T;P;Q) L 
⇐⇒ (Q L) ∨ (∃L1,L2:T List. ((L = (L1 @ L2) ∈ (T List)) ∧ (P L1) ∧ (star-append(T;P;Q) L2))))
Proof
Definitions occuring in Statement : 
star-append: star-append(T;P;Q)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
star-append: star-append(T;P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
or: P ∨ Q
, 
concat: concat(ll)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cons: [a / b]
, 
guard: {T}
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
uimplies: b supposing a
Lemmas referenced : 
exists_wf, 
list_wf, 
l_all_wf2, 
l_member_wf, 
equal_wf, 
append_wf, 
concat_wf, 
or_wf, 
length_wf, 
length-append, 
list-cases, 
reduce_nil_lemma, 
list_ind_nil_lemma, 
product_subtype_list, 
reduce_cons_lemma, 
append_assoc, 
l_all_cons, 
nil_wf, 
l_all_nil, 
cons_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
productEquality, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
setEquality, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
hyp_replacement, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
inrFormation, 
dependent_pairFormation, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P,Q:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}L:T  List
        (star-append(T;P;Q)  L
        \mLeftarrow{}{}\mRightarrow{}  (Q  L)  \mvee{}  (\mexists{}L1,L2:T  List.  ((L  =  (L1  @  L2))  \mwedge{}  (P  L1)  \mwedge{}  (star-append(T;P;Q)  L2))))
Date html generated:
2018_05_21-PM-07_33_58
Last ObjectModification:
2017_07_26-PM-05_08_40
Theory : general
Home
Index