Nuprl Lemma : lattice-extend-wc_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
∀[f:T ⟶ Point(L)]. ∀[ac:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
  (lattice-extend-wc(L;eq;eqL;f;ac) ∈ Point(L))
Proof
Definitions occuring in Statement : 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
lattice-extend_wf, 
free-dlwc-point-subtype, 
lattice-point_wf, 
free-dist-lattice-with-constraints_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf, 
bdd-distributive-lattice_wf, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
because_Cache, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
\mforall{}[ac:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    (lattice-extend-wc(L;eq;eqL;f;ac)  \mmember{}  Point(L))
Date html generated:
2020_05_20-AM-08_48_56
Last ObjectModification:
2015_12_28-PM-01_58_51
Theory : lattices
Home
Index