Nuprl Lemma : has-interior-point-implies

[k:ℕ]. ∀[c,a:ℚCube(k)].
  (has-interior-point(k;c;a)  dim(c) < dim(a)  (∀d:ℚCube(k). ((↑is-half-cube(k;c;d))  d ≤ a))))


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) has-interior-point: has-interior-point(k;c;a) is-half-cube: is-half-cube(k;h;c) rat-cube-face: c ≤ d rational-cube: Cube(k) nat: assert: b less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] not: ¬A false: False has-interior-point: has-interior-point(k;c;a) exists: x:A. B[x] and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B int_seg: {i..j-} true: True nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top squash: T guard: {T} lelt: i ≤ j < k iff: ⇐⇒ Q uiff: uiff(P;Q)
Lemmas referenced :  rat-point-in-half-cube rat-cube-face_wf istype-assert is-half-cube_wf istype-less_than rat-cube-dimension_wf has-interior-point_wf rational-cube_wf istype-nat rat-point-in-cube-interior-not-in-face nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf half-cube-dimension equal_wf squash_wf true_wf istype-universe int_seg_properties subtype_rel_self iff_weakening_equal inhabited-rat-cube-iff-point rat-point-in-cube_wf inhabited-rat-cube_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin sqequalHypSubstitution productElimination extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis universeIsType independent_functionElimination voidElimination inhabitedIsType applyEquality lambdaEquality_alt setElimination rename equalityTransitivity equalitySymmetry sqequalRule dependent_functionElimination because_Cache functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies intEquality natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation imageElimination instantiate universeEquality imageMemberEquality baseClosed minusEquality addEquality applyLambdaEquality dependent_set_memberEquality_alt

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,a:\mBbbQ{}Cube(k)].
    (has-interior-point(k;c;a)
    {}\mRightarrow{}  dim(c)  <  dim(a)
    {}\mRightarrow{}  (\mforall{}d:\mBbbQ{}Cube(k).  ((\muparrow{}is-half-cube(k;c;d))  {}\mRightarrow{}  (\mneg{}d  \mleq{}  a))))



Date html generated: 2020_05_20-AM-09_19_55
Last ObjectModification: 2019_11_02-PM-07_43_39

Theory : rationals


Home Index