Nuprl Lemma : q-floor-property

[r:ℚ]. (([r] ≤ r) ∧ r < [r] 1)


Proof




Definitions occuring in Statement :  q-floor: [r] qle: r ≤ s qless: r < s qadd: s rationals: uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q-floor: [r] all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q pi1: fst(t) cand: c∧ B guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a true: True sq_stable: SqStable(P) squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rat-int-part_wf2 set_wf rationals_wf qle_wf qless_wf equal_wf qadd_wf qle_witness q-floor_wf int-subtype-rationals qless_witness squash_wf qadd_preserves_qle qadd_preserves_qless qmul_wf sq_stable__and sq_stable_from_decidable decidable__qle decidable__qless true_wf qadd_comm_q qadd_ac_1_q qinverse_q qadd_inv_assoc_q iff_weakening_equal mon_ident_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination productEquality intEquality setEquality natural_numberEquality applyEquality because_Cache sqequalRule lambdaEquality spreadEquality productElimination independent_pairEquality setElimination rename dependent_set_memberEquality lambdaFormation equalityTransitivity equalitySymmetry independent_functionElimination isect_memberEquality independent_isectElimination hyp_replacement applyLambdaEquality independent_pairFormation minusEquality imageMemberEquality baseClosed imageElimination universeEquality

Latex:
\mforall{}[r:\mBbbQ{}].  (([r]  \mleq{}  r)  \mwedge{}  r  <  [r]  +  1)



Date html generated: 2018_05_22-AM-00_28_01
Last ObjectModification: 2017_07_26-PM-06_56_58

Theory : rationals


Home Index