Nuprl Lemma : qabs-of-positive

[q:ℚ]. |q| supposing 0 < q


Proof




Definitions occuring in Statement :  qabs: |r| qless: r < s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qabs: |r| callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) prop: subtype_rel: A ⊆B not: ¬A implies:  Q false: False all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce qless_wf int-subtype-rationals qpositive_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert-qpositive iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce sqequalAxiom natural_numberEquality applyEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry baseClosed independent_functionElimination voidElimination lambdaFormation unionElimination equalityElimination productElimination independent_pairFormation impliesFunctionality dependent_functionElimination

Latex:
\mforall{}[q:\mBbbQ{}].  |q|  \msim{}  q  supposing  0  <  q



Date html generated: 2018_05_21-PM-11_52_50
Last ObjectModification: 2017_07_26-PM-06_45_15

Theory : rationals


Home Index