Nuprl Lemma : qdiv-qminus
∀[x,y:ℚ].  (x/-(y)) = (-(x)/y) ∈ ℚ supposing ¬(y = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
qmul: r * s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
minus: -n
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
assert: ↑b
, 
qdiv: (r/s)
, 
qmul: r * s
, 
qinv: 1/r
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
qmul_wf, 
equal-wf-T-base, 
int-subtype-rationals, 
qmul-preserves-eq, 
qdiv_wf, 
assert-qeq, 
equal-wf-base, 
equal_wf, 
qmul-qdiv, 
iff_weakening_equal, 
rationals_wf, 
not_wf, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
qinv_inv_q, 
qmul_over_minus_qrng, 
qmul_one_qrng, 
qmul_comm_qrng, 
qmul-qdiv-cancel2, 
qmul-qdiv-cancel, 
qmul_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
applyLambdaEquality, 
extract_by_obid, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
hypothesisEquality, 
voidElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
baseClosed, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
hyp_replacement, 
isect_memberEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[x,y:\mBbbQ{}].    (x/-(y))  =  (-(x)/y)  supposing  \mneg{}(y  =  0)
Date html generated:
2018_05_21-PM-11_56_46
Last ObjectModification:
2017_07_26-PM-06_47_18
Theory : rationals
Home
Index