Nuprl Lemma : qdiv-qminus

[x,y:ℚ].  (x/-(y)) (-(x)/y) ∈ ℚ supposing ¬(y 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q subtype_rel: A ⊆B false: False prop: uiff: uiff(P;Q) and: P ∧ Q qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b qdiv: (r/s) qmul: s qinv: 1/r rev_uimplies: rev_uimplies(P;Q) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qmul_wf equal-wf-T-base int-subtype-rationals qmul-preserves-eq qdiv_wf assert-qeq equal-wf-base equal_wf qmul-qdiv iff_weakening_equal rationals_wf not_wf squash_wf true_wf qmul_zero_qrng qinv_inv_q qmul_over_minus_qrng qmul_one_qrng qmul_comm_qrng qmul-qdiv-cancel2 qmul-qdiv-cancel qmul_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution independent_functionElimination thin applyLambdaEquality extract_by_obid isectElimination minusEquality natural_numberEquality hypothesis applyEquality because_Cache sqequalRule hypothesisEquality voidElimination independent_isectElimination equalityTransitivity equalitySymmetry productElimination independent_pairFormation baseClosed lambdaEquality imageElimination imageMemberEquality hyp_replacement isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[x,y:\mBbbQ{}].    (x/-(y))  =  (-(x)/y)  supposing  \mneg{}(y  =  0)



Date html generated: 2018_05_21-PM-11_56_46
Last ObjectModification: 2017_07_26-PM-06_47_18

Theory : rationals


Home Index