Nuprl Lemma : qexp-convex2
∀a,b:ℚ.  (((0 ≤ a) ∧ (0 ≤ b)) 
⇒ (∀n:ℕ+. (|a - b| ↑ n ≤ |a ↑ n - b ↑ n|)))
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qabs: |r|
, 
qle: r ≤ s
, 
qsub: r - s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qsub: r - s
Lemmas referenced : 
mon_ident_q, 
qinverse_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qabs-of-nonneg, 
qexp-convex, 
qexp_preserves_qle, 
qadd_wf, 
qmul_wf, 
qadd_preserves_qle, 
qsub_wf, 
iff_weakening_equal, 
qabs-difference-symmetry, 
nat_wf, 
true_wf, 
squash_wf, 
qexp_wf, 
nat_plus_subtype_nat, 
rationals_wf, 
int-subtype-rationals, 
qle_wf, 
and_wf, 
nat_plus_wf, 
qle_connex
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
rename, 
minusEquality
Latex:
\mforall{}a,b:\mBbbQ{}.    (((0  \mleq{}  a)  \mwedge{}  (0  \mleq{}  b))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (|a  -  b|  \muparrow{}  n  \mleq{}  |a  \muparrow{}  n  -  b  \muparrow{}  n|)))
Date html generated:
2016_05_15-PM-11_10_48
Last ObjectModification:
2016_01_16-PM-09_24_27
Theory : rationals
Home
Index