Nuprl Lemma : qexp-convex2

a,b:ℚ.  (((0 ≤ a) ∧ (0 ≤ b))  (∀n:ℕ+(|a b| ↑ n ≤ |a ↑ b ↑ n|)))


Proof




Definitions occuring in Statement :  qexp: r ↑ n qabs: |r| qle: r ≤ s qsub: s rationals: nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T or: P ∨ Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B true: True squash: T uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) qsub: s
Lemmas referenced :  mon_ident_q qinverse_q qadd_ac_1_q qadd_comm_q qabs-of-nonneg qexp-convex qexp_preserves_qle qadd_wf qmul_wf qadd_preserves_qle qsub_wf iff_weakening_equal qabs-difference-symmetry nat_wf true_wf squash_wf qexp_wf nat_plus_subtype_nat rationals_wf int-subtype-rationals qle_wf and_wf nat_plus_wf qle_connex
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid dependent_functionElimination hypothesisEquality unionElimination hypothesis isectElimination natural_numberEquality applyEquality sqequalRule because_Cache lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination rename minusEquality

Latex:
\mforall{}a,b:\mBbbQ{}.    (((0  \mleq{}  a)  \mwedge{}  (0  \mleq{}  b))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (|a  -  b|  \muparrow{}  n  \mleq{}  |a  \muparrow{}  n  -  b  \muparrow{}  n|)))



Date html generated: 2016_05_15-PM-11_10_48
Last ObjectModification: 2016_01_16-PM-09_24_27

Theory : rationals


Home Index