Nuprl Lemma : qexp-convex

a,b:ℚ.  ((0 ≤ b)  (b ≤ a)  (∀n:ℕ+(a b ↑ n ≤ (a ↑ b ↑ n))))


Proof




Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qsub: s rationals: nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat_plus: + prop: nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] less_than: a < b squash: T less_than': less_than'(a;b) true: True subtract: m iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) le: A ≤ B guard: {T} rev_uimplies: rev_uimplies(P;Q) qsub: s qge: a ≥ b qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  qadd_functionality_wrt_qle qmul_comm_qrng qle_witness qmul_preserves_qle2 qexp_preserves_qle qmul_assoc_qrng qmul_ident q_distrib qadd_inv_assoc_q mon_assoc_q qinv_inv_q mon_ident_q qinverse_q qadd_ac_1_q qadd_comm_q qle_weakening_eq_qorder qmul_functionality_wrt_qle qle_functionality_wrt_implies qmul_one_qrng qmul_over_minus_qrng qmul_over_plus_qrng exp_zero_q iff_weakening_equal exp_unroll_q true_wf squash_wf qadd_preserves_qle qexp-nonneg add-subtract-cancel le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le less-iff-le not-lt-2 false_wf decidable__lt qle_reflexivity qadd_wf qmul_wf less_than_wf rationals_wf int-subtype-rationals nat_plus_wf nat_plus_subtype_nat primrec-wf-nat-plus le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le qsub_wf qexp_wf qle_wf nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination dependent_set_memberEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality introduction imageMemberEquality baseClosed minusEquality addEquality productElimination independent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality isect_memberFormation

Latex:
\mforall{}a,b:\mBbbQ{}.    ((0  \mleq{}  b)  {}\mRightarrow{}  (b  \mleq{}  a)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (a  -  b  \muparrow{}  n  \mleq{}  (a  \muparrow{}  n  -  b  \muparrow{}  n))))



Date html generated: 2016_05_15-PM-11_10_36
Last ObjectModification: 2016_01_16-PM-09_26_37

Theory : rationals


Home Index