Nuprl Lemma : qexp-convex
∀a,b:ℚ.  ((0 ≤ b) 
⇒ (b ≤ a) 
⇒ (∀n:ℕ+. (a - b ↑ n ≤ (a ↑ n - b ↑ n))))
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qle: r ≤ s
, 
qsub: r - s
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qsub: r - s
, 
qge: a ≥ b
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
qadd_functionality_wrt_qle, 
qmul_comm_qrng, 
qle_witness, 
qmul_preserves_qle2, 
qexp_preserves_qle, 
qmul_assoc_qrng, 
qmul_ident, 
q_distrib, 
qadd_inv_assoc_q, 
mon_assoc_q, 
qinv_inv_q, 
mon_ident_q, 
qinverse_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qle_weakening_eq_qorder, 
qmul_functionality_wrt_qle, 
qle_functionality_wrt_implies, 
qmul_one_qrng, 
qmul_over_minus_qrng, 
qmul_over_plus_qrng, 
exp_zero_q, 
iff_weakening_equal, 
exp_unroll_q, 
true_wf, 
squash_wf, 
qadd_preserves_qle, 
qexp-nonneg, 
add-subtract-cancel, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
qle_reflexivity, 
qadd_wf, 
qmul_wf, 
less_than_wf, 
rationals_wf, 
int-subtype-rationals, 
nat_plus_wf, 
nat_plus_subtype_nat, 
primrec-wf-nat-plus, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
qsub_wf, 
qexp_wf, 
qle_wf, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
rename, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
minusEquality, 
addEquality, 
productElimination, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberFormation
Latex:
\mforall{}a,b:\mBbbQ{}.    ((0  \mleq{}  b)  {}\mRightarrow{}  (b  \mleq{}  a)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (a  -  b  \muparrow{}  n  \mleq{}  (a  \muparrow{}  n  -  b  \muparrow{}  n))))
Date html generated:
2016_05_15-PM-11_10_36
Last ObjectModification:
2016_01_16-PM-09_26_37
Theory : rationals
Home
Index