Nuprl Lemma : qexp_step
∀[n:ℕ]. ∀[e:ℚ].  (e ↑ n + 1 = (e ↑ n * e) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qmul: r * s
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
exp_unroll_q, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
qmul_wf, 
qexp_wf, 
iff_weakening_equal, 
add-subtract-cancel, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[e:\mBbbQ{}].    (e  \muparrow{}  n  +  1  =  (e  \muparrow{}  n  *  e))
Date html generated:
2018_05_21-PM-11_59_16
Last ObjectModification:
2017_07_26-PM-06_48_37
Theory : rationals
Home
Index