Nuprl Lemma : qexp_step

[n:ℕ]. ∀[e:ℚ].  (e ↑ (e ↑ e) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qmul: s rationals: nat: uall: [x:A]. B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: nat_plus: + nat: le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True guard: {T}
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf exp_unroll_q decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf qmul_wf qexp_wf iff_weakening_equal add-subtract-cancel nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination sqequalRule isect_memberEquality voidEquality intEquality because_Cache minusEquality imageMemberEquality baseClosed axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[e:\mBbbQ{}].    (e  \muparrow{}  n  +  1  =  (e  \muparrow{}  n  *  e))



Date html generated: 2018_05_21-PM-11_59_16
Last ObjectModification: 2017_07_26-PM-06_48_37

Theory : rationals


Home Index