Nuprl Lemma : small_reciprocal_wf
∀e:{q:ℚ| 0 < q} . (small_reciprocal(e) ∈ {n:ℕ+| (1/n) < e} )
Proof
Definitions occuring in Statement : 
small_reciprocal: small_reciprocal(e)
, 
qless: r < s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
small_reciprocal: small_reciprocal(e)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
guard: {T}
Lemmas referenced : 
small-reciprocal, 
subtype_rel_self, 
rationals_wf, 
qless_wf, 
exists_wf, 
nat_plus_wf, 
qdiv_wf, 
subtype_rel_set, 
less_than_wf, 
int-subtype-rationals, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
int-equal-in-rationals, 
not_wf, 
isect_wf, 
equal_wf, 
set_wf, 
pi1_wf_top, 
uimplies_subtype, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
isectEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
intEquality, 
independent_isectElimination, 
setElimination, 
rename, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
addLevel, 
impliesFunctionality, 
productElimination, 
setEquality, 
productEquality, 
independent_pairEquality, 
dependent_set_memberEquality
Latex:
\mforall{}e:\{q:\mBbbQ{}|  0  <  q\}  .  (small\_reciprocal(e)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  (1/n)  <  e\}  )
Date html generated:
2018_05_22-AM-00_07_56
Last ObjectModification:
2018_05_19-PM-04_05_33
Theory : rationals
Home
Index