Nuprl Lemma : small_reciprocal_wf

e:{q:ℚ0 < q} (small_reciprocal(e) ∈ {n:ℕ+(1/n) < e} )


Proof




Definitions occuring in Statement :  small_reciprocal: small_reciprocal(e) qless: r < s qdiv: (r/s) rationals: nat_plus: + all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] small_reciprocal: small_reciprocal(e) member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a prop: so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  small-reciprocal subtype_rel_self rationals_wf qless_wf exists_wf nat_plus_wf qdiv_wf subtype_rel_set less_than_wf int-subtype-rationals nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-T-base int-equal-in-rationals not_wf isect_wf equal_wf set_wf pi1_wf_top uimplies_subtype top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin instantiate extract_by_obid hypothesis sqequalRule introduction sqequalHypSubstitution isectElimination functionEquality isectEquality natural_numberEquality because_Cache hypothesisEquality lambdaEquality intEquality independent_isectElimination setElimination rename approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation equalityTransitivity equalitySymmetry baseClosed addLevel impliesFunctionality productElimination setEquality productEquality independent_pairEquality dependent_set_memberEquality

Latex:
\mforall{}e:\{q:\mBbbQ{}|  0  <  q\}  .  (small\_reciprocal(e)  \mmember{}  \{n:\mBbbN{}\msupplus{}|  (1/n)  <  e\}  )



Date html generated: 2018_05_22-AM-00_07_56
Last ObjectModification: 2018_05_19-PM-04_05_33

Theory : rationals


Home Index