Nuprl Lemma : functor-is-isomorphism

[A,B:SmallCategory].
  ∀f:Functor(A;B)
    (cat-isomorphism(Cat;A;B;f)
    ⇐⇒ Bij(cat-ob(A);cat-ob(B);ob(f)) ∧ (∀x,y:cat-ob(A).  Bij(cat-arrow(A) y;cat-arrow(B) (f x) (f y);f y)))


Proof




Definitions occuring in Statement :  cat-cat: Cat functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-isomorphism: cat-isomorphism(C;x;y;f) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory biject: Bij(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] cat-cat: Cat cat-isomorphism: cat-isomorphism(C;x;y;f) member: t ∈ T top: Top cat-inverse: fg=1 iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] id_functor: 1 functor-comp: functor-comp(F;G) so_lambda: so_lambda3 so_apply: x[s1;s2;s3] biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} cand: c∧ B pi1: fst(t)
Lemmas referenced :  cat_arrow_triple_lemma cat_comp_tuple_lemma cat_id_tuple_lemma exists_wf cat-functor_wf equal-wf-T-base functor-comp_wf biject_wf cat-ob_wf functor-ob_wf all_wf cat-arrow_wf functor-arrow_wf small-category_wf ob_mk_functor_lemma equal_wf squash_wf true_wf iff_weakening_equal arrow_mk_functor_lemma subtype_rel-equal biject-inverse small-category-subtype subtype_rel_dep_function mk-functor_wf functor-arrow-comp cat-comp_wf functor-arrow-id cat-id_wf id_functor_wf equal-functors
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation isectElimination hypothesisEquality lambdaEquality productEquality baseClosed because_Cache applyEquality productElimination applyLambdaEquality hyp_replacement equalitySymmetry imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality independent_isectElimination independent_functionElimination dependent_pairFormation dependent_set_memberEquality setElimination rename instantiate functionExtensionality functionEquality cumulativity promote_hyp

Latex:
\mforall{}[A,B:SmallCategory].
    \mforall{}f:Functor(A;B)
        (cat-isomorphism(Cat;A;B;f)
        \mLeftarrow{}{}\mRightarrow{}  Bij(cat-ob(A);cat-ob(B);ob(f))
                \mwedge{}  (\mforall{}x,y:cat-ob(A).    Bij(cat-arrow(A)  x  y;cat-arrow(B)  (f  x)  (f  y);f  x  y)))



Date html generated: 2020_05_20-AM-07_53_56
Last ObjectModification: 2017_07_28-AM-09_19_47

Theory : small!categories


Home Index