Nuprl Lemma : functor-is-isomorphism
∀[A,B:SmallCategory].
  ∀f:Functor(A;B)
    (cat-isomorphism(Cat;A;B;f)
    
⇐⇒ Bij(cat-ob(A);cat-ob(B);ob(f)) ∧ (∀x,y:cat-ob(A).  Bij(cat-arrow(A) x y;cat-arrow(B) (f x) (f y);f x y)))
Proof
Definitions occuring in Statement : 
cat-cat: Cat
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
cat-cat: Cat
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
member: t ∈ T
, 
top: Top
, 
cat-inverse: fg=1
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
id_functor: 1
, 
functor-comp: functor-comp(F;G)
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
pi1: fst(t)
Lemmas referenced : 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma, 
exists_wf, 
cat-functor_wf, 
equal-wf-T-base, 
functor-comp_wf, 
biject_wf, 
cat-ob_wf, 
functor-ob_wf, 
all_wf, 
cat-arrow_wf, 
functor-arrow_wf, 
small-category_wf, 
ob_mk_functor_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
arrow_mk_functor_lemma, 
subtype_rel-equal, 
biject-inverse, 
small-category-subtype, 
subtype_rel_dep_function, 
mk-functor_wf, 
functor-arrow-comp, 
cat-comp_wf, 
functor-arrow-id, 
cat-id_wf, 
id_functor_wf, 
equal-functors
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
independent_pairFormation, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
baseClosed, 
because_Cache, 
applyEquality, 
productElimination, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
setElimination, 
rename, 
instantiate, 
functionExtensionality, 
functionEquality, 
cumulativity, 
promote_hyp
Latex:
\mforall{}[A,B:SmallCategory].
    \mforall{}f:Functor(A;B)
        (cat-isomorphism(Cat;A;B;f)
        \mLeftarrow{}{}\mRightarrow{}  Bij(cat-ob(A);cat-ob(B);ob(f))
                \mwedge{}  (\mforall{}x,y:cat-ob(A).    Bij(cat-arrow(A)  x  y;cat-arrow(B)  (f  x)  (f  y);f  x  y)))
Date html generated:
2020_05_20-AM-07_53_56
Last ObjectModification:
2017_07_28-AM-09_19_47
Theory : small!categories
Home
Index