Nuprl Lemma : case-type-comp-true-false

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}].
  (∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cB:Gamma, psi ⊢ Compositon(B)].
     (case-type-comp(Gamma; phi; psi; A; B; cA; cB) cA ∈ Gamma ⊢ Compositon(A))) supposing 
     (Gamma ⊢ (1(𝔽 phi) and 
     Gamma ⊢ (psi  0(𝔽)))


Proof




Definitions occuring in Statement :  case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB) composition-structure: Gamma ⊢ Compositon(A) face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-1: 1(𝔽) face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: subtype_rel: A ⊆B face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt same-cubical-type: Gamma ⊢ B cubical-type: {X ⊢ _} rev_implies:  Q or: P ∨ Q case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB) case-term: (u ∨ v) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-id-adjoin: [u] csm-id: 1(X) face-forall: (∀ phi) cubical-term-at: u(a) interval-presheaf: 𝕀 names: names(I) nat: face-1: 1(𝔽) lattice-1: 1 fset-singleton: {x} cons: [a b] true: True squash: T guard: {T} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A context-subset: Gamma, phi
Lemmas referenced :  composition-structure_wf context-subset_wf cubical-type_wf face-term-implies_wf face-1_wf face-0_wf istype-cubical-term face-type_wf cubical_set_wf subset-cubical-type context-subset-is-subset composition-structure-subset face-and-eq-1 lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf face-and_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf nat_wf empty-context-subset-lemma6 subtype_rel_product names-hom_wf cube-set-restriction_wf istype-universe top_wf istype-top face-term-implies-subset case-type-comp_wf compatible-composition-disjoint case-type-same1 thin-context-subset face-1-implies-subset face-or_wf face-or-eq-1 subtype_rel_wf composition-structure-equal cubical-term-equal csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-1 constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-term_wf thin-context-subset-adjoin csm-context-subset-subtype3 cube_set_map_wf csm-face-term-implies csm-face-1 add-name_wf new-name_wf cc-adjoin-cube_wf nc-s_wf f-subset-add-name interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self fl_all-1 squash_wf true_wf fl_all_wf istype-nat iff_weakening_equal fl-eq_wf face-forall_wf csm-face-type eqtt_to_assert assert-fl-eq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf composition-in-subset csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 subset-cubical-term2 sub_cubical_set_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate because_Cache applyEquality sqequalRule independent_isectElimination lambdaFormation_alt dependent_functionElimination independent_functionElimination productElimination equalityIstype lambdaEquality_alt productEquality cumulativity isectEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry functionEquality universeEquality functionIsType Error :memTop,  inlFormation_alt hyp_replacement applyLambdaEquality functionExtensionality dependent_set_memberEquality_alt intEquality natural_numberEquality imageElimination imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation_alt promote_hyp voidElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (\mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
      \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
          (case-type-comp(Gamma;  phi;  psi;  A;  B;  cA;  cB)  =  cA))  supposing 
          (Gamma  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  phi)  and 
          Gamma  \mvdash{}  (psi  {}\mRightarrow{}  0(\mBbbF{})))



Date html generated: 2020_05_20-PM-05_18_41
Last ObjectModification: 2020_04_18-PM-07_48_26

Theory : cubical!type!theory


Home Index