Nuprl Lemma : remove-singularity

[X:Type]. ∀[d:metric(X)].
  ∀k:ℕ. ∀f:{p:ℝ^k| r0 < ||p||}  ⟶ X. ∀z:X.
    ((∃c:{c:ℝr0 ≤ c} . ∀m:ℕ+. ∀p:{p:ℝ^k| r0 < ||p||} .  ((||p|| ≤ (r(4)/r(m)))  (mdist(d;f p;z) ≤ (c/r(m)))))
     mcomplete(X with d)
     (∃g:ℝ^k ⟶ X. ((∀p:ℝ^k. (req-vec(k;p;λi.r0)  p ≡ z)) ∧ (∀p:{p:ℝ^k| r0 < ||p||} p ≡ p))))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| req-vec: req-vec(n;x;y) real-vec: ^n mcomplete: mcomplete(M) mk-metric-space: with d mdist: mdist(d;x;y) meq: x ≡ y metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  real: eq_int: (i =z j) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) mconverges-to: lim n→∞.x[n] y less_than': less_than'(a;b) true: True squash: T less_than: a < b sq_exists: x:A [B[x]] rless: x < y assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  incr-binary-seq: IBS uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 remove-singularity-seq: remove-singularity-seq(k;p;f;z) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) ge: i ≥  rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + nat: le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n meq: x ≡ y uimplies: supposing a cand: c∧ B and: P ∧ Q prop: so_apply: x[s] so_lambda: λ2x.t[x] metric: metric(X) subtype_rel: A ⊆B exists: x:A. B[x] implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ifthenelse_wf sq_stable__less_than ibs-property sq_stable__rless mdist-same rleq_functionality iff_weakening_equal subtype_rel_self true_wf squash_wf istype-le rleq-int-fractions2 decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma real-vec-norm-0 real-vec-norm_functionality req_weakening rless_functionality int_term_value_add_lemma itermAdd_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert int_subtype_base lelt_wf set_subtype_base realvec-ibs-property assert_of_eq_int eqtt_to_assert realvec-ibs_wf eq_int_wf istype-universe metric_wf istype-nat mdist_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_properties nat_plus_properties rless-int rdiv_wf nat_plus_wf rleq_wf real_wf mk-metric-space_wf mcomplete_wf meq_wf real-vec-norm_wf rless_wf int_seg_wf req-vec_wf int-to-real_wf req_witness cauchy-mlimit-unique real-vec_wf mcauchy_wf remove-singularity-seq_wf cauchy-mlimit_wf remove-singularity-seq-mcauchy
Rules used in proof :  addEquality imageMemberEquality dependent_set_memberFormation_alt dependent_set_memberEquality_alt multiplyEquality imageElimination cumulativity promote_hyp sqequalBase baseClosed intEquality equalityIstype equalityElimination universeEquality instantiate voidElimination isect_memberEquality_alt int_eqEquality approximateComputation unionElimination dependent_functionElimination inrFormation_alt closedConclusion functionIsType productIsType setIsType independent_pairFormation productElimination natural_numberEquality because_Cache independent_isectElimination setElimination universeIsType inhabitedIsType isectIsType equalitySymmetry equalityTransitivity sqequalRule applyEquality lambdaEquality_alt dependent_pairFormation_alt rename independent_functionElimination lambdaFormation_alt hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    \mforall{}k:\mBbbN{}.  \mforall{}f:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}    {}\mrightarrow{}  X.  \mforall{}z:X.
        ((\mexists{}c:\{c:\mBbbR{}|  r0  \mleq{}  c\} 
              \mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .    ((||p||  \mleq{}  (r(4)/r(m)))  {}\mRightarrow{}  (mdist(d;f  p;z)  \mleq{}  (c/r(m)))))
        {}\mRightarrow{}  mcomplete(X  with  d)
        {}\mRightarrow{}  (\mexists{}g:\mBbbR{}\^{}k  {}\mrightarrow{}  X
                  ((\mforall{}p:\mBbbR{}\^{}k.  (req-vec(k;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  z))  \mwedge{}  (\mforall{}p:\{p:\mBbbR{}\^{}k|  r0  <  ||p||\}  .  g  p  \mequiv{}  f  p))))



Date html generated: 2019_10_30-AM-11_24_44
Last ObjectModification: 2019_10_29-PM-01_33_50

Theory : real!vectors


Home Index