Nuprl Lemma : simplex-face_wf
∀[n:ℤ]. ∀[v:Δ(n)]. ∀[i:ℕn + 2].  (simplex-face(v;i) ∈ Δ(n + 1))
Proof
Definitions occuring in Statement : 
simplex-face: simplex-face(v;i)
, 
std-simplex: Δ(n)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
std-simplex: Δ(n)
, 
simplex-face: simplex-face(v;i)
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
less_than: a < b
, 
squash: ↓T
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
req_int_terms: t1 ≡ t2
, 
sq_stable: SqStable(P)
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
decidable__le, 
std-simplex-properties, 
istype-le, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int-to-real_wf, 
int_seg_wf, 
rleq_weakening_equal, 
rleq_wf, 
req_wf, 
rsum_wf, 
std-simplex-void, 
std-simplex_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
radd_wf, 
add-subtract-cancel, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
req_functionality, 
rsum-split-last, 
req_weakening, 
rsum_functionality, 
req-implies-req, 
rsub_wf, 
req-iff-rsub-is-0, 
radd_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
rsum-split2, 
not-equal-2, 
zero-add, 
add_functionality_wrt_le, 
sq_stable__le, 
less-iff-le, 
ifthenelse_wf, 
eq_int_wf, 
real_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
subtract-add-cancel, 
equal_wf, 
eq_int_eq_true, 
btrue_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rsum-shift, 
int_subtype_base, 
rsum-empty, 
rsum_functionality2, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
unionElimination, 
isectElimination, 
dependent_set_memberEquality_alt, 
because_Cache, 
lambdaEquality_alt, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
sqequalRule, 
independent_isectElimination, 
applyEquality, 
independent_pairFormation, 
imageElimination, 
addEquality, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
functionIsType, 
axiomEquality, 
isectIsTypeImplies, 
closedConclusion, 
applyLambdaEquality, 
minusEquality, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
intEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[v:\mDelta{}(n)].  \mforall{}[i:\mBbbN{}n  +  2].    (simplex-face(v;i)  \mmember{}  \mDelta{}(n  +  1))
Date html generated:
2019_10_30-AM-11_30_49
Last ObjectModification:
2019_07_31-PM-03_40_34
Theory : real!vectors
Home
Index