Nuprl Lemma : simplex-face_wf

[n:ℤ]. ∀[v:Δ(n)]. ∀[i:ℕ2].  (simplex-face(v;i) ∈ Δ(n 1))


Proof




Definitions occuring in Statement :  simplex-face: simplex-face(v;i) std-simplex: Δ(n) int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q nat: std-simplex: Δ(n) simplex-face: simplex-face(v;i) real-vec: ^n implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B less_than': less_than'(a;b) subtract: m true: True rev_uimplies: rev_uimplies(P;Q) pointwise-req: x[k] y[k] for k ∈ [n,m] req_int_terms: t1 ≡ t2 sq_stable: SqStable(P) nequal: a ≠ b ∈ 
Lemmas referenced :  decidable__le std-simplex-properties istype-le lt_int_wf eqtt_to_assert assert_of_lt_int int_seg_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract_wf intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int-to-real_wf int_seg_wf rleq_weakening_equal rleq_wf req_wf rsum_wf std-simplex-void std-simplex_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma radd_wf add-subtract-cancel int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 req_functionality rsum-split-last req_weakening rsum_functionality req-implies-req rsub_wf req-iff-rsub-is-0 radd_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma rsum-split2 not-equal-2 zero-add add_functionality_wrt_le sq_stable__le less-iff-le ifthenelse_wf eq_int_wf real_wf assert_of_eq_int neg_assert_of_eq_int subtract-add-cancel equal_wf eq_int_eq_true btrue_wf subtype_rel_self iff_weakening_equal rsum-shift int_subtype_base rsum-empty rsum_functionality2 req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename productElimination hypothesis hypothesisEquality unionElimination isectElimination dependent_set_memberEquality_alt because_Cache lambdaEquality_alt inhabitedIsType lambdaFormation_alt equalityElimination sqequalRule independent_isectElimination applyEquality independent_pairFormation imageElimination addEquality natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity functionIsType axiomEquality isectIsTypeImplies closedConclusion applyLambdaEquality minusEquality multiplyEquality imageMemberEquality baseClosed intEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[v:\mDelta{}(n)].  \mforall{}[i:\mBbbN{}n  +  2].    (simplex-face(v;i)  \mmember{}  \mDelta{}(n  +  1))



Date html generated: 2019_10_30-AM-11_30_49
Last ObjectModification: 2019_07_31-PM-03_40_34

Theory : real!vectors


Home Index