Nuprl Lemma : compact-metric-to-metric-continuity

X:Type. ∀d:metric(X).  (mcompact(X;d)  (∀Y:Type. ∀dY:metric(Y). ∀f:FUN(X ⟶ Y).  UC(f:X ⟶ Y)))


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) m-unif-cont: UC(f:X ⟶ Y) mfun: FUN(X ⟶ Y) metric: metric(X) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 bfalse: ff subtype_rel: A ⊆B btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) subtract: m prod-metric: prod-metric(k;d) rev_implies:  Q iff: ⇐⇒ Q rneq: x ≠ y rmetric: rmetric() mdist: mdist(d;x;y) guard: {T} rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k nat_plus: + int_seg: {i..j-} pi2: snd(t) pi1: fst(t) prod-metric-space: prod-metric-space(k;X) mk-metric-space: with d false: False not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: m-unif-cont: UC(f:X ⟶ Y) squash: T is-mfun: f:FUN(X;Y) metric: metric(X) meq: x ≡ y sq_stable: SqStable(P) so_apply: x[s] prop: so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] mfun: FUN(X ⟶ Y) mcompact: mcompact(X;d) implies:  Q all: x:A. B[x]
Lemmas referenced :  mdist-nonneg rabs-of-nonneg rsub_functionality rabs_functionality rabs_wf real_term_value_const_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_sub_lemma real_polynomial_null mdist-symm mdist-same req-iff-rsub-is-0 itermAdd_wf itermSubtract_wf rsub_wf rleq-implies-rleq rsum-single radd_functionality req_weakening rsum-split-first rleq_functionality int_subtype_base istype-false radd_wf rsum_wf rless_wf int_term_value_var_lemma int_formula_prop_and_lemma itermVar_wf intformand_wf rless-int rdiv_wf rleq_wf eq_int_wf ifthenelse_wf mdist_functionality rmetric-meq prod-metric-meq rmetric_wf real_wf is-mfun_wf istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le nat_plus_properties mdist_wf prod-metric_wf compact-metric-to-real-continuity nat_plus_wf mk-metric-space_wf prod-metric-space-complete int_seg_wf istype-le istype-void m-TB-product istype-universe mcompact_wf metric_wf mfun_wf int-to-real_wf req_witness sq_stable__meq meq_wf sq_stable__all
Rules used in proof :  equalityTransitivity equalitySymmetry sqequalBase baseApply equalityIstype setIsType addEquality int_eqEquality inrFormation_alt closedConclusion functionIsType productIsType isect_memberEquality_alt dependent_pairFormation_alt approximateComputation independent_isectElimination unionElimination independent_pairEquality voidElimination independent_pairFormation dependent_set_memberEquality_alt universeEquality instantiate imageElimination baseClosed imageMemberEquality functionIsTypeImplies natural_numberEquality dependent_functionElimination inhabitedIsType because_Cache independent_functionElimination universeIsType applyEquality hypothesis functionEquality lambdaEquality_alt sqequalRule hypothesisEquality isectElimination extract_by_obid introduction setElimination cut rename thin productElimination sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}X:Type.  \mforall{}d:metric(X).    (mcompact(X;d)  {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}dY:metric(Y).  \mforall{}f:FUN(X  {}\mrightarrow{}  Y).    UC(f:X  {}\mrightarrow{}  Y)))



Date html generated: 2019_10_31-AM-05_59_13
Last ObjectModification: 2019_10_30-AM-11_43_29

Theory : reals


Home Index