Nuprl Lemma : compact-metric-to-metric-continuity
∀X:Type. ∀d:metric(X).  (mcompact(X;d) 
⇒ (∀Y:Type. ∀dY:metric(Y). ∀f:FUN(X ⟶ Y).  UC(f:X ⟶ Y)))
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
mfun: FUN(X ⟶ Y)
, 
metric: metric(X)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
req_int_terms: t1 ≡ t2
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
prod-metric: prod-metric(k;d)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
, 
rmetric: rmetric()
, 
mdist: mdist(d;x;y)
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
prod-metric-space: prod-metric-space(k;X)
, 
mk-metric-space: X with d
, 
false: False
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
squash: ↓T
, 
is-mfun: f:FUN(X;Y)
, 
metric: metric(X)
, 
meq: x ≡ y
, 
sq_stable: SqStable(P)
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
mfun: FUN(X ⟶ Y)
, 
mcompact: mcompact(X;d)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
mdist-nonneg, 
rabs-of-nonneg, 
rsub_functionality, 
rabs_functionality, 
rabs_wf, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
mdist-symm, 
mdist-same, 
req-iff-rsub-is-0, 
itermAdd_wf, 
itermSubtract_wf, 
rsub_wf, 
rleq-implies-rleq, 
rsum-single, 
radd_functionality, 
req_weakening, 
rsum-split-first, 
rleq_functionality, 
int_subtype_base, 
istype-false, 
radd_wf, 
rsum_wf, 
rless_wf, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformand_wf, 
rless-int, 
rdiv_wf, 
rleq_wf, 
eq_int_wf, 
ifthenelse_wf, 
mdist_functionality, 
rmetric-meq, 
prod-metric-meq, 
rmetric_wf, 
real_wf, 
is-mfun_wf, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
mdist_wf, 
prod-metric_wf, 
compact-metric-to-real-continuity, 
nat_plus_wf, 
mk-metric-space_wf, 
prod-metric-space-complete, 
int_seg_wf, 
istype-le, 
istype-void, 
m-TB-product, 
istype-universe, 
mcompact_wf, 
metric_wf, 
mfun_wf, 
int-to-real_wf, 
req_witness, 
sq_stable__meq, 
meq_wf, 
sq_stable__all
Rules used in proof : 
equalityTransitivity, 
equalitySymmetry, 
sqequalBase, 
baseApply, 
equalityIstype, 
setIsType, 
addEquality, 
int_eqEquality, 
inrFormation_alt, 
closedConclusion, 
functionIsType, 
productIsType, 
isect_memberEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
independent_pairEquality, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
universeEquality, 
instantiate, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
functionIsTypeImplies, 
natural_numberEquality, 
dependent_functionElimination, 
inhabitedIsType, 
because_Cache, 
independent_functionElimination, 
universeIsType, 
applyEquality, 
hypothesis, 
functionEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
setElimination, 
cut, 
rename, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}X:Type.  \mforall{}d:metric(X).    (mcompact(X;d)  {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}dY:metric(Y).  \mforall{}f:FUN(X  {}\mrightarrow{}  Y).    UC(f:X  {}\mrightarrow{}  Y)))
Date html generated:
2019_10_31-AM-05_59_13
Last ObjectModification:
2019_10_30-AM-11_43_29
Theory : reals
Home
Index